Theoretical Studies on the Unimolecular Decomposition of Methanol

  • Lawrence B. Harding
  • H. B. Schlegel
  • R. Krishnan
  • J. A. Pople


Reactive collisions typically involve dramatic changes in the electronic structure of the species, and it is necessary to account for these to calculate accurate potential energy surfaces, particularly in the critically important saddle-point or transition-structure regions. As a consequence a realistic theoretical description of reactive potential energy surfaces requires very accurate electronic wave functions;1-3 large flexible basis sets are necessary and the effects of electron correlation must be included. To date relatively few such studies have been carried out on systems involving more than three or four atoms.


Activation Energy Potential Energy Surface Calculated Activation Energy Unimolecular Decomposition Formyl Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S, Binkley, Electron correlation theories and their application to the study of simple reaction potential surfaces, Int. J. Quantum Chem. 14: 545 (1978).CrossRefGoogle Scholar
  2. 2.
    H. F. Schaefer III, The 1,2 hydrogen shift: A common vehicle for the disappearance of evanescent molecular species, Acc. Chem. Res. 12: 288 (1979).CrossRefGoogle Scholar
  3. 3.
    (a) S. P. Walch and T. H. Dunning, Jr., Theoretical study of the potential surface for OH + H2, J. Chem. Phys. 72: 1303 (1980).CrossRefGoogle Scholar
  4. (b).
    S. P. Walch and T. H. Dunning, Jr., Calculated barrier to hydrogen abstraction from CH4 by O(3P), J. Chem. Phys. 72: 3221 (1980).CrossRefGoogle Scholar
  5. 4.
    C. W. Bauschlicher, Jr., K. Haber, H. F. Schaefer III, and C. F. Bender, Concerted non-least-motion pathway for the singlet methylene insertion reaction CH2(1A1) + H2 → CH4, J. Amer. Chem. Soc. 99: 3610 (1977).CrossRefGoogle Scholar
  6. 5.
    D. J. DeFrees, B. A. Levi, S. K. Pollack, W. J. Hehre, J. S. Binkley, and J. A. Pople, Effect of electron correlation on theoretical equilibrium geometries, J. Amer. Chem. Soc. 79: 4085 (1979).CrossRefGoogle Scholar
  7. 6.
    R. J. Bartlett, I. Shavitt, and G. D. Purvis, The quartic force field of H2O determined by many-body methods that include quadrupole excitation effects, J. Chem. Phys. 71: 281 (1979).CrossRefGoogle Scholar
  8. 7.
    G. F. Adams, G. D. Bent, G. D. Purvis, and R. J. Bartlett, The electronic structure of the formyl radical HCO, J. Chem. Phys. 71: 3637 (1979).CrossRefGoogle Scholar
  9. 8.
    J. A. Pople, J. S. Binkley, and R. Seeger, Theoretical models incorporating electron correlation, Int. J. Quantum Chem. Symp. 10: 1 (1976).CrossRefGoogle Scholar
  10. 9.
    R. Krishnan and J. A. Pople, Approximate fourth-order perturbation theory of the electron correlation theory, Int. J. Quantum Chem. 14: 91 (1978).CrossRefGoogle Scholar
  11. 10.
    P. C. Hariharan and J. A. Pople, Accuracy of AHn equilibrium geometries by single determinant molecular orbital theory, Mol. Phys. 27: 209 (1979).CrossRefGoogle Scholar
  12. 11.
    L. B. Harding, H. B. Schlegel, R. Krishnan, and J. A. Pople, A Møller-Plesset study of the H4CO potential energy surface, J. Phys. Chem. 84: 3394 (1980).CrossRefGoogle Scholar
  13. 12.
    D. G. Truhlar, Test of bond-order methods for predicting the position of the minimum-energy path for hydrogen atom transfer reactions, J. Amer. Chem. Soc. 94: 7584 (1972).CrossRefGoogle Scholar
  14. 13.
    J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, Derivative studies in Hartree-Fock and Møller-Plesset theories, Int. J. Quantum Chem. Symp. 13: 225 (1979).Google Scholar
  15. 14.
    J. R. Sodeau and E. K. C. Lee, Intermediacy of hydroxymethylene (HCOH) in the low temperature matrix photochemistry of formaldehyde, Chem. Phys. Lett. 57: 71 (1978).CrossRefGoogle Scholar
  16. 15.
    (a) R. L. Jaffe, D. M. Hayes, and K. Morokuma, Photodissociation of formaldehyde: Potential energy surfaces for H2CO* → H2 + CO, J. Chem. Phys. 60: 5108 (1974).CrossRefGoogle Scholar
  17. (b).
    R. L. Jaffe and K. Morokuma, MCSCF potential energy surface for photodissociation of formaldehyde, J. Chem. Phys. 64: 4881 (1976).CrossRefGoogle Scholar
  18. 16.
    J. D. Goddard and H. F. Schaefer III, The photodissociation of formaldehyde: Potential energy surface features, J. Chem. Phys. 70: 5117 (1979).CrossRefGoogle Scholar
  19. 17.(a)
    S. R. Langhoff and E. R. Davidson, Configuration interaction calculations on the nitrogen molecule, Int. J. Quantum Chem. 8: 61 (1979).CrossRefGoogle Scholar
  20. (b).
    E. R. Davidson and D. W. Silver, Size consistency in the dilute helium gas electron structure, Chem. Phys. Lett. 52: 403 (1978).CrossRefGoogle Scholar
  21. 18.
    P. L. Houston and C. B. Moore, Formaldehyde photochemistry: Appearance rate, vibrational relaxation and energy distribution of the CO product, J. Chem. Phys. 65: 757 (1976).CrossRefGoogle Scholar
  22. 19.
    A. Horowitz and J. G. Calvert, The quantum efficiency of the primary processes in formaldehyde photolysis at 3130 Å and 25°C, Int. J. Chem. Kinet. 10: 713 (1978).CrossRefGoogle Scholar
  23. 20.
    W. H. Miller, Tunneling corrections to unimolecular rate constants, with applications to formaldehyde, J. Amer. Chem. Soc. 101: 5810 (1979).Google Scholar
  24. 21.
    R. Krishnan, M. J. Frisch, and J. A. Pople, Contribution of triple substitutions to the electron correlation energy in fourth order perturbation theory, J. Chem. Phys. 72: 4244 (1980).CrossRefGoogle Scholar
  25. 22.
    R. K. Lengel and R. N. Zare, Experimental determination of the singlet-triplet splitting in methylene, J. Amer. Chem. Soc. 100: 7495 (1978).CrossRefGoogle Scholar
  26. 23.
    D. R. Stull and H. Prophet, “JANAF Thermochemical Tables”, The Dow Chemical Company, Midland, MI (1970), NSRDS-NBS-37.Google Scholar
  27. 24.
    M. H. Baghal-Vayjooee, A. J. Colussi, and S. W. Benson, Very low pressure reactor. A new technique for measuring rates and equilibria of radical molecule reactions at low temperature. Heat of formation of the methyl radical, J. Amer. Chem. Soc. 100: 3214 (1978).CrossRefGoogle Scholar
  28. 25.
    S. W. Benson, “Thermochemical Kinetics”, 2nd ed., John Wiley and Sons, New York (1976).Google Scholar
  29. 26.
    P. J. Robinson and K. A, Holbrook, “Unimolecular Reactions”, John Wiley and Sons, New York (1972).Google Scholar
  30. 27.
    D. Aronowitz, D. W. Naegeli, and I. Glassman, Kinetics of pyrolysis of methanol, J. Phys. Chem. 81: 2555 (1977).CrossRefGoogle Scholar
  31. 28.
    C. K. Westbrook and F. L. Dryer, A comprehensive mechanism for methanol oxidation, Combust. Sci. Tech. 20: 125 (1979).CrossRefGoogle Scholar
  32. 29.
    P. Casavecchio, R. J. Buss, S. J. Sikener, and Y. T. Lee, Observation of CH3O produced in the crossed beam study of the O(1D2) + CH4 reaction, J. Chem. Phys., submitted for publication.Google Scholar
  33. 30.
    L. B. Harding and W. A. Goddard III, Methylene: Ab initio vibronic analysis and reinterpretation of the spectroscopic and negative ion photoelectron experiments, Chem. Phys. Lett. 55: 217 (1978).CrossRefGoogle Scholar
  34. 31.
    R. A. Fletcher and G. Pilcher, Measurements of heats of combustion by flame calorimetry part 6. Formaldehyde and glyoxal, Trans. Faraday Soc. 66: 794 (1970).CrossRefGoogle Scholar
  35. 32.
    T. Shimanouchi, “Tables of Molecular Vibrational Frequencies”, NSRDS-NBS 6, 11 and 17, National Bureau of Standards, Washington, D.C. (1967 and 1968).Google Scholar
  36. 33.
    D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, W. M. Bailey, and R. H. Schumm, “Selected Values of Chemical Thermodynamic Properties”, NBS Technical Note 270-3, U.S. Government Printing Office, Washington, D.C. (1968).Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Lawrence B. Harding
    • 1
  • H. B. Schlegel
    • 2
  • R. Krishnan
    • 3
  • J. A. Pople
    • 3
  1. 1.Theoretical Chemistry Group, Chemistry DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Department of ChemistryWayne State UniversityDetroitUSA
  3. 3.Department of ChemistryCarnegie-Mellon UniversityPittsburghUSA

Personalised recommendations