Collisional Excitation of H2O by O-Atom Impact: Classical Dynamics on an Accurate Ab Initio Potential Energy Surface

  • M. J. Redmon
  • R. J. Bartlett
  • B. C. Garrett
  • G. D. PurvisIII
  • P. M. Saatzer
  • G. C. Schatz
  • I. Shavitt


One of the major objectives of theoretical chemistry is the calculation, from “first principles”, of the cross sections for fundamental processes occurring in molecular collisions. This requires a high-quality Ab initio potential energy surface (PES), fit to a suitable analytical form, and an accurate dynamical technique for solving the appropriate equations of motion. This paper describes such an approach to the determination of cross sections for the vibrational excitation of H2O by O(3P) atom impact.


Potential Energy Surface Asymmetric Stretch Collisional Excitation Collisional Energy Transfer Quasiclassical Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. H. G. Dickinson, W. C. Bain, L. Thomas, E. R. Williams, D. B. Jenkins, and N. D. Twiddy, The determination of atomic oxygen concentration and associated parameters in the lower ionosphere, Proc. Roy. Soc. Lond., Ser. A 369: 379 (1980).CrossRefGoogle Scholar
  2. 2.
    T. J. Rieger, K. S. Tait, and H. R. Baum, Atmospheric interaction radiation from high-altitude rocket exhausts, J. Quant. Spectrosc. Radiat. Transfer 15: 1117 (1975).CrossRefGoogle Scholar
  3. 3.
    M. G. Dunn, G. T. Skinner, and C. E. Treanor, Infrared radiation from H2O, CO2, or NH3 collisionally excited by N2, O, or Ar, AIAA Journal 13: 803 (1975).CrossRefGoogle Scholar
  4. 4.
    R. J. Bartlett and G. D. Purvis III, Many-body perturbation theory, coupled-pair many-electron theory, and the importance of quadruple excitations for the correlation problem, Int. J. Quantum Chem. 14: 561 (1978).CrossRefGoogle Scholar
  5. 5.
    R. J. Bartlett and G. D. Purvis III, Molecular Applications of coupled-cluster and many-body perturbation methods, Physica Scripta 21: 255 (1980).CrossRefGoogle Scholar
  6. 6.
    R. J. Bartlett, I. Shavitt, and G. D. Purvis III, The quartic force field of H2O determined by many-body methods that include quadruple excitation effects, J. Chem. Phys. 71: 281 (1979).CrossRefGoogle Scholar
  7. 7.
    G. F. Adams, G. D. Bent, G. D. Purvis III, and R. J. Bartlett, Calculation of dissociation energies using many-body perturbation theory, J. Chem. Phys., in press.Google Scholar
  8. 8.
    L. T. Redmon, G. D. Purvis III, and R. J. Bartlett, Accurate binding energies of diborane, borane carbonyl, and borazine determined by many-body perturbation theory, J. Amer. Chem. Soc. 101: 2856 (1979).CrossRefGoogle Scholar
  9. 9.
    L. T. Redmon, G. D. Purvis III, and R. J. Bartlett, Correlation effects in the isomeric cyanides: HNC↔HCN, LiNC↔LiCN, and BNC↔BCN, J. Chem. Phys. 72: 986 (1980).CrossRefGoogle Scholar
  10. L. T. Redmon, G. D. Purvis III, and R. J. Bartlett, The unimolecular isomerization of methyl isocyanide to methyl cyanide, J. Chem. Phys. 69: 5386 (1978).CrossRefGoogle Scholar
  11. 10.
    G. F. Adams, G. D. Bent, G. D. Purvis III, and R. J. Bartlett, The electronic structure of the formyl radical, HCO, J. Chem. Phys. 71: 3699 (1979).CrossRefGoogle Scholar
  12. 11.
    K. S. Sorbie and J. N. Murrell, Analytical potentials for triatomic molecules from spectroscopic data, Mol. Phys. 29: 1387 (1975).CrossRefGoogle Scholar
  13. 12.
    M. J. Redmon and G. C. Schatz, An analytical fit to an accurate Ab initio (1A1) potential surface for H2O, Chem. Phys. 54: 365 (1981).CrossRefGoogle Scholar
  14. 13.
    G. C. Schatz and T. Mulloney, Classical perturbation theory of good action-angle variables. Applications to semiclassical eigenvalues and to collisional energy transfer in polyatomic molecules, J. Phys. Chem. 83: 989 (1979).CrossRefGoogle Scholar
  15. 14.
    B. A. Brandow, Linked-cluster expansions for the nuclear many-body problem, Rev. Mod. Phys. 39: 771 (1967).CrossRefGoogle Scholar
  16. 15.
    I. Lindgren, A coupled-cluster approach to the many-body perturbation theory for open-shell systems, Int. J. Quantum Chem. Symp. 12: 33 (1978).Google Scholar
  17. 16.
    R. J. Bartlett and M. J. Redmon, “Vibrational Excitation Cross Sections for the O(3P) + H2O and O(3P) + CO2 Collisions”, final report on contract no. F04611-79-C-0024, Air Force Rocket Propulsion Laboratory, October, 1980.Google Scholar
  18. 17.
    L. M. Raff, L. Stivers, R. N. Porter, D. L. Thompson, and L. B. Sims, Semiempirical VB calculation of the (H2, I2) interaction potential, J. Chem. Phys. 52: 3449 (1970).CrossRefGoogle Scholar
  19. 18.
    L. M. Raff, Theoretical investigations of the reaction dynamics of polyatomic systems: Chemistry of the hot atom (T* + CH4) and (T* + CD4) systems, J. Chem. Phys. 60: 2220 (1974).CrossRefGoogle Scholar
  20. 19.
    J. C. Tully, Diatomics-in-molecules potential energy surfaces. I. First-row triatomic hydrides, J. Chem. Phys. 58: 1396 (1973).CrossRefGoogle Scholar
  21. 20.
    S. Carter, I. M. Mills, and J. N. Murrell, A potential energy surface for the ground state of formaldehyde, \(\tilde{X}^{1}A_{1}\), Mol. Phys. 39: 455 (1980).CrossRefGoogle Scholar
  22. 21.
    D. R. McLaughlin and D. L. Thompson, Ab initio dynamics: \(HeH^{+}+H_{2}\rightarrow He+H_{3}^{+}(C_{2v})\) classical trajectories using a quantum mechanical potential energy surface, J. Chem. Phys. 59: 4393 (1973).CrossRefGoogle Scholar
  23. 22.
    N. Sathyamurthy and L. M. Raff, Quasiclassical trajectory studies using 3D spline interpolation of Ab initio surfaces, J. Chem. Phys. 63: 464 (1975).CrossRefGoogle Scholar
  24. 23.
    J. W. Downing, J. Michl, J. Cizek, and J. Paldus, Multidimensional interpolation of polynomial roots, Chem. Phys. Lett. 67: 377 (1979).CrossRefGoogle Scholar
  25. 24.
    A. J. C. Varandas and J. N. Murrell, A many-body expansion of polyatomic potential energy surfaces: Applications to Hn systems, J. Chem. Soc. Faraday Trans. II 73: 939 (1977).CrossRefGoogle Scholar
  26. 25.
    R. L. Vance and G. A. Gallup, Representation of Ab initio energy surfaces by analytic functions, J. Chem. Phys. 69: 736 (1978).CrossRefGoogle Scholar
  27. 26.
    A review on this topic is D. G. Truhlar and J. T. Muckerman, Reactive scattering cross sections II: Quasiclassical and semi-classical methods, in: “Atom Molecule Collision Theory: A Guide for the Experimentalist”, R. B. Bernstein, ed., Plenum, New York (1979), p. 505.CrossRefGoogle Scholar
  28. 27.
    A review on this topic is I. C. Percival, Semiclassical theory of bound states, Advan. Chem. Phys. 36: 1 (1977).CrossRefGoogle Scholar
  29. 28.
    H. Goldstein, “Classical Mechanics”, Addison-Wesley, Reading, MA (1950), pp. 288ff.Google Scholar
  30. 29.
    G. C. Schatz and H. Elgersma, A quasiclassical trajectory study of product vibrational distributions in the OH + H2 → H2O + H reaction, Chem. Phys. Lett. 73: 21 (1980).CrossRefGoogle Scholar
  31. 30.
    T. Mulloney and G. C. Schatz, Classical rotational and centrifugal sudden approximations for atom-molecule collisional energy transfer, Chem. Phys. 45: 213 (1980).CrossRefGoogle Scholar
  32. 31.
    G. C. Schatz, A quasiclassical trajectory study of collisional excitation in Li+ + CO2, J. Chem. Phys. 72: 3929 (1980).CrossRefGoogle Scholar
  33. 32.
    A. R. Hoy, I. M. Mills, and G. Strey, Anharmonic force constant calculations, Mol. Phys. 24: 1265 (1972).CrossRefGoogle Scholar
  34. 33.
    P. S. Bagus, B. Liu, and H. F. Schaefer III, Study of the contact-term contribution to the hyperfine structure obtained from spin-unrestricted Hartree-Fock wavefunctions, Phys. Rev. A 2: 555 (1970).CrossRefGoogle Scholar
  35. 34.
    J. A. Pople and J. S. Binkely, Correlation energies for AHn molecules and cations, Mol. Phys. 29: 599 (1975).CrossRefGoogle Scholar
  36. 35.
    A. R. Hoy and P. R. Bunker, A precise solution of the rotation bending Schrödinger equation for a triatomic molecule with application to the water molecule, J. Mol. Spectry. 74: 1 (1979).CrossRefGoogle Scholar
  37. 36.
    R. K. Nesbet, Atomic Bethe-Goldstone equations. III. Correlation energies of ground states cf Be, B, C, N, O, F, and Ne, Phys. Rev. 175: 2 (1968).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • M. J. Redmon
    • 1
  • R. J. Bartlett
    • 1
  • B. C. Garrett
    • 1
  • G. D. PurvisIII
    • 1
  • P. M. Saatzer
    • 1
    • 2
  • G. C. Schatz
    • 1
    • 3
  • I. Shavitt
    • 1
  1. 1.Battelle Columbus LaboratoriesColumbusUSA
  2. 2.Air Force Rocket Propulsion LaboratoryEdwards Air Force BaseUSA
  3. 3.Department of ChemistryNorthwestern UniversityEvanstonUSA

Personalised recommendations