Rainbow Scattering in Inelastic Molecular Collisions

  • Lowell D. Thomas


The role of rainbow scattering in elastic collisions of atoms and atomic ions is well known1,2 and provides an important link between experimental observation and the theoretical potential energy curve which governs the dynamics of the colliding atoms. Only recently, however, has the analogous phenomenon in the case of non-spherical potentials and inelastic collisions been investigated.


Potential Energy Surface Impact Parameter Differential Cross Section Deflection Angle Heavy Black Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. B. Bernstein, Quantum effects in elastic molecular scattering, Advan. Chem. Phys. 10: 75 (1966).CrossRefGoogle Scholar
  2. 2.
    U. Buck, Elastic scattering, Advan. Chem. Phys. 30: 313 (1975).CrossRefGoogle Scholar
  3. 3.
    W. Eastes, U. Ross, and J. P. Toennies, Experimental observation of structure in the distribution of final rotational states in small angle inelastic scattering of Li+ from CO (Ec.m. = 4–7 eV), Chem. Phys. 39: 407 (1979).CrossRefGoogle Scholar
  4. 4.
    W. Schepper, U. Ross, and D. Beck, Anisotropy of the repulsive intermolecular potential from rotationally inelastic scattering, Z. Phys. A 290: 131 (1979).CrossRefGoogle Scholar
  5. 5.
    D. Beck, U. Ross, and W. Schepper, Isotope shift in the bulge effect of molecular scattering, Phys. Rev. A 19: 2173 (1979).CrossRefGoogle Scholar
  6. 6.
    K. Bergmann, R. Engelhardt, U. Hefter, and J. Witt, State-to-state differential cross sections for rotational transitions in Na2 + He collisions, J. Chem. Phys. 71: 2726 (1979).CrossRefGoogle Scholar
  7. 7.
    K. Bergmann, U. Hefter, and J. Witt, State-to-state differential cross sections for rotationally inelastic scattering of Na2 by He, J. Chem. Phys. 72: 4777 (1980).CrossRefGoogle Scholar
  8. 8.
    K. Bergmann, U. Hefter, A. Mattheus, and J. Witt, Resolution of angular rotational rainbows in Na2-Ne collisions, preprint (March, 1980).Google Scholar
  9. 9.
    J. A. Serri, A. Morales, W. Moskowitz, D. E. Pritchard, C. H. Becker, and J. L. Kinsey, Observation of halos in rotationally inelastic scattering of Na2 from Ar, J. Chem. Phys. 72: 6304 (1980).CrossRefGoogle Scholar
  10. 10.
    L. D. Thomas, Classical trajectory study of differential cross sections for Li+-CO and N2 inelastic collisions, J. Chem. Phys. 67: 5224 (1977).CrossRefGoogle Scholar
  11. 11.
    L. D. Thomas, W. P. Kraemer, G. H. F. Diercksen, and P. McGuire, Comparison of classical mechanics and the coupled states approximation for Li+-CO scattering on an Ab initio calculated CI potential energy surface, Chem. Phys. 27: 237 (1978).CrossRefGoogle Scholar
  12. 12.
    L. D. Thomas, Solution of the coupled equations of inelastic atom-molecule scattering for a single initial state, J. Chem. Phys. 70: 2979 (1979).CrossRefGoogle Scholar
  13. 13.
    L. D. Thomas, W. P. Kraemer, and G, F. H. Diercksen, Low angle scattering of Li+ by CO, Chem. Phys. Lett. 74: 445 (1980).CrossRefGoogle Scholar
  14. 14.
    L. D. Thomas, On rainbow scattering in inelastic molecular collisions, J. Chem. Phys. 73: 5905 (1980).CrossRefGoogle Scholar
  15. 15.
    D. Beck, U. Ross, and W. Schepper, Rotationally inelastic classical scattering from an anisotropic rigid shell potential of rotation symmetry, Z. Phys. A 293: 107 (1979).CrossRefGoogle Scholar
  16. 16.
    R. Schinke, Theoretical studies of vib-rotational excitation of Li+-H2 collisions at intermediate energies, Chem. Phys. 34: 65 (1978).CrossRefGoogle Scholar
  17. 17.
    R. Schinke and P. McGuire, Rotational rainbow oscillations in He-Na2 collisions: Comparison between coupled states and infinite order sudden approximations, J. Chem. Phys. 71: 4201 (1979).CrossRefGoogle Scholar
  18. 18.
    R. Schinke, Quantum effects in rotationally inelastic molecular scattering: K + N2 and K + CO collisions on simple model surfaces, J. Chem. Phys. 72: 1120 (1980).CrossRefGoogle Scholar
  19. 19.
    R. Schinke, Rotational rainbow maxima: A time dependent study, Chem. Phys. 47: 287 (1980).CrossRefGoogle Scholar
  20. 20.
    H. J. Korsch and R. Schinke, A uniform semiclassical sudden approximation for rotationally inelastic scattering, J. Chem. Phys. 73: 1222 (1980).CrossRefGoogle Scholar
  21. 21.
    R. Schinke, Inversion of rotationally inelastic differential cross sections under sudden conditions, J. Chem. Phys. 73: 6117 (1980).CrossRefGoogle Scholar
  22. 22.
    R. Schinke, W. Müller, W. Meyer, and P. McGuire, Theoretical investigation of rotational rainbow structures in X-Na2 collisions using CI potential surfaces. I. Rigid-rotor X=He scattering and comparison with state-to-state experiments, J. Chem. Phys., submitted for publication.Google Scholar
  23. 23.
    J. M. Bowman, Rotational rainbows in inelastic atom-molecule differential cross sections, Chem. Phys. Lett. 62: 309 (1979).CrossRefGoogle Scholar
  24. 24.
    C. B. Boyer, “The Rainbow from Myth to Mathematics”, Thomas Yoseloff, New York (1959).Google Scholar
  25. 25.
    L. W. Taylor, “Physics: The Pioneer Science”, Houghton Mifflin Co., The Riverside Press, Cambridge (1941), pp. 498–503.Google Scholar
  26. 26.
    Descartes, “Les Meteores” (1637), see English translation in: W. F. Magie, “A Source Book in Physics”, McGraw-Hill, New York (1935), p. 273.Google Scholar
  27. 27.
    Reference 25, p. 406.Google Scholar
  28. 28.
    I. Newton, “Opticks: Or a Treatise of the Reflections, Refractions, Inflections and Colours of Light”, 3rd ed., London (1721), p. 147.Google Scholar
  29. 29.
    G. B. Airy, On the intensity of light in the neighborhood of a caustic, Trans. Camb. Phil. Soc. 6: 379 (1838).Google Scholar
  30. 30.
    A. Sommerfeld, “Optics”, Academic, New York (1954), p. 352.Google Scholar
  31. 31.
    R. Mecke, Andere Fälle von Beugung, Chapter 3 in: “Handbuch der Physik”, Vol. 20, H. Konen, ed., Springer, Berlin (1928), p. 67.Google Scholar
  32. 32.
    H. Goldstein, “Classical Mechanics”, Addison-Wesley, Reading, MA (1950), p. 82.Google Scholar
  33. 33.
    K. W. Ford and J. A. Wheeler, Semiclassical description of scattering, Ann. Phys. 7: 259 (1959).CrossRefGoogle Scholar
  34. 34.
    F. A. Morse, R. B. Bernstein, and H. U. Hostettler, Evaluation of the intermolecular potential well depth from observations of rainbow scattering: Cs-Hg and K-Hg, J. Chem. Phys. 36: 1947 (1962).CrossRefGoogle Scholar
  35. 35.
    U. Buck and H. Pauly, Determination of intermolecular potentials by the inversion of molecular beam scattering data. II. High resolution measurements of differential scattering cross sections and the inversion of the data for Na-Hg, J. Chem. Phys. 54: 1929 (1971).CrossRefGoogle Scholar
  36. 36.
    W. H. Miller, The classical S-matrix in molecular collisions, Advan. Chem. Phys. 30: 77 (1975).CrossRefGoogle Scholar
  37. 37.
    W. H. Miller, Semiclassical theory of atom-diatom collisions: Path integrals and the classical S matrix, J. Chem. Phys. 53: 1949 (1970).CrossRefGoogle Scholar
  38. 38.
    J. N. L. Connor and R. A. Marcus, Theory of semiclassical transition probabilities for inelastic and reactive collisions. II. Asymptotic evaluation of the S matrix, J. Chem. Phys. 55: 5636 (1971).CrossRefGoogle Scholar
  39. 39.
    W. R. Gentry, Ion-dipole scattering in classical perturbation theory, J. Chem. Phys. 60: 2547 (1974).CrossRefGoogle Scholar
  40. 40.
    R. Böttner, U. Ross, and J. P. Toennies, Measurements of rotational and vibrational quantum transition probabilities in the scattering of Li+ from N2 and CO at center of mass energies of 4.23 and 7.07 eV, J. Chem. Phys. 65: 733 (1976).CrossRefGoogle Scholar
  41. 41.
    L. D. Thomas, The calculation of classical transition probabilities in atom-molecule collisions for fixed total angular momentum, Chem. Phys. Lett. 51: 35 (1977).CrossRefGoogle Scholar
  42. 42.
    L. D. Thomas, W. P. Kraemer, and G. H. F. Diercksen, Classical trajectory study on an Ab initio CI vibrotor potential energy surface for Li-CO differential cross sections, Chem. Phys. 30: 33 (1978).CrossRefGoogle Scholar
  43. 43.
    R. J. Cross, Jr., Classical small-angle scattering from anisotropic potentials, J. Chem. Phys. 46: 609 (1967).CrossRefGoogle Scholar
  44. 44.
    R. M. Harris and J. F. Wilson, Optical model analysis of non-reactive collisions of reactive molecules: Scattering of K, Rb, and Cs from CCl4, CH3I, and SnCl4, J. Chem. Phys. 54: 2088 (1971).CrossRefGoogle Scholar
  45. 45.
    U. Buck and V. Khare, A comparison of different sudden approximations for molecular scattering, Chem. Phys. 26: 215 (1977).CrossRefGoogle Scholar
  46. 46.
    F. E. Budenholzer and E. A. Gislason, Classical differential cross sections for anisotropic potentials, J. Chem. Phys. 68: 4222 (1978).CrossRefGoogle Scholar
  47. 47.
    U. Buck, F. Gestermann, and H. Pauly, Double rainbows in atom-molecule scattering, Chem. Phys. Lett. 33: 186 (1975).CrossRefGoogle Scholar
  48. 48.
    P. McGuire and D. J. Kouri, Quantum mechanical close coupling approach to molecular collisions. jz-conserving coupled states approximation, J. Chem. Phys. 60: 2488 (1974).CrossRefGoogle Scholar
  49. 49.
    R. T Pack, Space-fixed vs. body-fixed axes in atom-diatomic molecule scattering. Sudden approximations, J. Chem. Phys. 60: 633 (1974).CrossRefGoogle Scholar
  50. 50.
    G. E. Zahr and L. D. Thomas, Semiclassical calculation of rotational rainbows in coplanar Li+-CO collisions, to be published.Google Scholar
  51. 51.
    R. Goldflam, S. Green, and D. J. Kouri, Infinite order sudden approximation for rotational energy transfer in gaseous mixtures, J. Chem. Phys. 67: 4149 (1977).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Lowell D. Thomas
    • 1
  1. 1.National Resource for Computation in Chemistry, Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations