On CC and CS Descriptions of Phase-Sensitive Cross Sections: Computations for He + HCl

  • V. Khare
  • D. E. Fitz
  • D. J. Kouri
  • D. Evans
  • D. K. Hoffman


The coupled states or centrifugal sudden (CS) approximation1-3 is widely recognized as the most accurate of a general class of angular momentum decoupling approximations developed over the past decade for the purpose of treating molecular collisions. Considerable effort has been expended in clarifying the approximation and determining its optimum form.3-8 It has been established that the CS parameter \( \overline \ell \), which enters when the centrifugal potential operator L2/2MR2 is approximated by the form1 \( \overline \ell \left( {\overline \ell + 1} \right)^2 /2MR^2 \), must retain the character of an orbital angular momentum quantum number.3-8 Furthermore, it has been shown that the technique of l-labelling [i.e., choosing the CS \( \overline \ell \) parameter as a function of the initial (l) and final (l′) values of the orbital angular momenta when calculating a particular Arthurs-Dalgarno9 T matrix element TJ(j′l′|jl)] and the proper choice of phase enables one to (a) satisfy exactly the proper asymptotic boundary conditions,3-8,10-12 (b) ensure time reversal symmetry,13,14 (c) obtain exact results in the limit of zero potential anisotropy (thereby ensuring that the helicity transitions induced by tumbling of the atom-diatom system in space are exactly described15) and (d) build back in effects of the rotation of the scattering vector (in an approximate fashion) so that the resulting CS approximation to the T matrix in the coordinate representation is no longer local (diagonal) in the angles.16


Differential Cross Section Integral Cross Section Quantization Axis Close Coupling Molecular Collision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. McGuire and D. J. Kouri, Quantum mechanical close coupling approach to molecular collisions. jz-Conserving coupled states approximation, J. Chem. Phys. 60: 2488 (1974).CrossRefGoogle Scholar
  2. 2.
    R. T Pack, Space-fixed vs. body-fixed axes in atom-diatomic molecule scattering: Sudden approximations, J. Chem. Phys. 60: 633 (1974).CrossRefGoogle Scholar
  3. 3.
    See also the reviews by D. J. Kouri, Rotational excitation II: Approximation methods, in: “Atom-Molecule Collision Theory: A Guide for the Experimentalist”, R. B. Bernstein, ed., Plenum Press, New York (1979), p. 301.CrossRefGoogle Scholar
  4. H. Rabitz, Effective Hamiltonians in molecular collisions, in: “Dynamics of Molecular Collisions, Part B”, W. H. Miller, ed., Plenum Press, New York (1976), p. 33.CrossRefGoogle Scholar
  5. 4.
    Y. Shimoni and D. J. Kouri, Quantum mechanical close coupling approach to molecular collisions: Averaged definite parity jz approximation with Clebsch-Gordan weights, J. Chem. Phys. 66: 2841 (1977).CrossRefGoogle Scholar
  6. 5.
    G. A. Parker and R. T Pack, Identification of the partial wave parameter and simplification of the differential cross section in the jz CCS approximation in molecular scattering, J. Chem. Phys. 66: 2850 (1977).CrossRefGoogle Scholar
  7. 6.
    D. J. Kouri and Y. Shimoni, On the jz-conserving coupled states approximation: Magnetic transitions and angular distributions in rotating and fixed frames, J. Chem. Phys. 67: 86 (1977).CrossRefGoogle Scholar
  8. 7.
    V. Khare, On the equivalence between the space fixed and the body fixed formulations of the jz-conserving approximation, J. Chem. Phys. 67: 3897 (1977).CrossRefGoogle Scholar
  9. 8.
    V. Khare, D. J. Kouri, and R. T Pack, On magnetic transitions and the interpretation of the partial wave parameter in the CS and IOS approximations in molecular scattering theory, J. Chem. Phys. 69: 4419 (1978).CrossRefGoogle Scholar
  10. 9.
    A. M. Arthurs and A. Dalgarno, The theory of scattering by a rigid rotator, Proc. Roy. Soc. London, Ser. A 256: 540 (1960).CrossRefGoogle Scholar
  11. 10.
    G. A. Parker and R. T Pack, Rotationally and vibrationally inelastic scattering in the rotational IOS approximation: Ultra-simple calculation of total (differential, integral, and transport) cross sections for nonspherical molecules, J. Chem. Phys. 68: 1585 (1978).CrossRefGoogle Scholar
  12. 11.
    R. Schinke and P. McGuire, On the sudden centrifugal potential in the space-fixed system: Dependence of proton-H2 cross sections on the choice of angular momentum parameter, Chem. Phys. 28: 129 (1978).CrossRefGoogle Scholar
  13. 12.
    D. J. Kouri, T. G. Heil, and Y. Shimoni, Sufficiency conditions for the validity of the jz-conserving coupled states approximation, J. Chem. Phys. 65: 1462 (1976).CrossRefGoogle Scholar
  14. 13.
    V. Khare, D. E. Fitz, and D. J. Kouri, Effect of phase and orbital wave parameter choices on CS and IOS degeneracy averaged differential cross sections, J. Chem. Phys. 73: 2802 (1980).CrossRefGoogle Scholar
  15. 14.
    V. Khare and D. J. Kouri, Time-reversal symmetry for magnetic transitions in rotationally inelastic scattering. II. Angular momentum decoupling approximations, J. Chem. Phys. 72: 2017 (1980).CrossRefGoogle Scholar
  16. 15.
    D. J. Kouri, R. Goldflam, and Y. Shimoni, On the coupled states and infinite order sudden approximations to the body-frame wave-function, J. Chem. Phys. 67: 4534 (1977).CrossRefGoogle Scholar
  17. 16.
    V. Khare, D. J. Kouri, and M. Baer, Infinite order sudden approximation for reactive scattering. I. Basic it-labelled formulation, J. Chem. Phys. 71: 1188 (1979).CrossRefGoogle Scholar
  18. 17.
    D. Secrest, unpublished.Google Scholar
  19. 18.
    Y. Shimoni, D. J. Kouri, and A. Kumar, Close coupling calculations of magnetic transitions for He + H2 in an uncoupled space frame, Chem. Phys. Lett. 52: 299 (1977).CrossRefGoogle Scholar
  20. 19.
    S. M. Tarr, H. Rabitz, D. E. Fitz, and R. A. Marcus, Classical and quantum centrifugal decoupling approximations for HCl-Ar, J. Chem. Phys. 66: 2854 (1977).CrossRefGoogle Scholar
  21. 20.
    L. Monchick, State selected He-HCl collision cross sections, J. Chem. Phys. 67: 4626 (1977).CrossRefGoogle Scholar
  22. 21.
    M. H. Alexander, Close-coupling studies of the orientation dependence of rotationally inelastic collisions, J. Chem. Phys. 67: 2703 (1977).CrossRefGoogle Scholar
  23. 22.
    D. E. Fitz, V. Khare, and D. J. Kouri, CS and CC computational study of degeneracy averaged differential cross sections and Am-integral cross sections: He-CO, HD-Ne, He-H2, Chem. Phys., in press.Google Scholar
  24. 23.
    V. Khare, D. J. Kouri, and D. K. Hoffman, Propensity for conserving polarization in rotationally inelastic molecular collisions, to be published.Google Scholar
  25. 24.
    Y. Shimoni and D. J. Kouri, On representative orbital angular momentum quantum numbers in the definite-parity jz CCS approximation, J. Chem. Phys. 65: 3958 (1976).CrossRefGoogle Scholar
  26. 25.
    M. H. Alexander, Polarization in elastic scattering: Close coupling studies on Ar-N2, Chem. Phys. 27: 229 (1978).CrossRefGoogle Scholar
  27. 26.
    L. Monchick and D. J. Kouri, Magnetic transitions in the initial-l labelled interpretation of the CS approximation. Computations for He + HC1, J. Chem. Phys. 69: 3262 (1978).CrossRefGoogle Scholar
  28. 27.
    S. Stolte and J. Reuss, Elastic scattering cross sections II: Noncentral potentials, in: “Atom-Molecule Collision Theory: A Guide for the Experimentalist”, R. B. Bernstein, ed., Plenum Press, New York (1979), p. 201; and to be published.CrossRefGoogle Scholar
  29. 28.
    L. Monchick and S. Green, Validity of approximation methods in molecular scattering. III. Effective potential and coupled states approximations for differential and gas kinetic cross sections, J. Chem. Phys, 66: 3085 (1977).CrossRefGoogle Scholar
  30. 29.
    U. Buck, F. Huisken, J. Schleusener, and J. Schafer, Differential cross sections for the j=0→l rotational excitation in HD-Ne collisions and their relevance to the anisotropic interaction, J. Chem. Phys. 72: 1512 (1980).CrossRefGoogle Scholar
  31. 30.
    D. E. Fitz, D. J. Kouri, D. Evans, and D. K. Hoffman, On CC, CS, and IOS generalized phenomenological cross sections for atom-diatom mixtures, to be published.Google Scholar
  32. 31.
    V. Khare, D. J. Kouri, and D. K. Hoffman, On jz-preserving propensities in molecular collisions. I. Quantal coupled states and classical impulsive approximations, J. Chem. Phys., in press.Google Scholar
  33. 32.
    M. Alexander, P. J. Dagdigian, and A. E. DePristo, Quantum interpretation of fully state-selected rotationally inelastic collision experiments, J. Chem. Phys. 66: 59 (1977).CrossRefGoogle Scholar
  34. 33.
    See, e.g., R. Shafer and R. G. Gordon, Quantum scattering theory of rotational relaxation and spectral line shapes in H2-He gas mixtures, J. Chem. Phys. 58: 5422 (1973).CrossRefGoogle Scholar
  35. 34.
    R. Goldflam, S. Green, and D. J. Kouri, Infinite order sudden approximation for rotational energy transfer in gaseous mixtures, J. Chem. Phys. 67: 4149 (1977).CrossRefGoogle Scholar
  36. 35.
    R. Goldflam, D. J. Kouri, and S. Green, On the factorization and fitting of molecular scattering information, J. Chem. Phys. 67: 5661 (1977).CrossRefGoogle Scholar
  37. 36.
    W.-K. Liu, F. R. McCourt, D. E. Fitz, and D. J. Kouri, Production and relaxation cross sections for the shear viscosity Senftleben-Beenakker effect. I. Formal expressions and their coupled-states and infinite-order-sudden approximations for atom-diatom systems, J. Chem. Phys. 71: 415 (1979).CrossRefGoogle Scholar
  38. 37.
    D. K. Hoffman, Collision integrals of a gas of rigid convex molecules, J. Chem. Phys. 50: 4833 (1969).Google Scholar
  39. E. R. Cooper and D. K. Hoffman, Model calculations of transport coefficients for diatomic gases in an external magnetic field, J. Chem. Phys. 53: 1100 (1970).CrossRefGoogle Scholar
  40. 38.
    D. R. Evans, Ph.D. thesis, Iowa State University, 1980.Google Scholar
  41. 39.
    M. Jacob and G. C. Wick, On the general theory of collisions of particles with spin, Ann. Phys. NY 7: 404 (1959).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • V. Khare
    • 1
  • D. E. Fitz
    • 1
  • D. J. Kouri
    • 1
  • D. Evans
    • 2
  • D. K. Hoffman
    • 2
  1. 1.Departments of Chemistry and PhysicsUniversity of Houston Central CampusHoustonUSA
  2. 2.Ames Laboratory and Department of ChemistryIowa State UniversityAmesUSA

Personalised recommendations