Overview of Non-Reactive Scattering

  • David A. Micha


Non-reactive molecular scattering has been periodically reviewed from different points of view. Two volumes edited by Miller1 contain detailed chapters on theoretical approaches to the dynamics of molecular collisions. An encyclopedic theoretical guide to the experimentalist on atom-molecule collisions has recently been edited by Bernstein.2 Two reviews, by Dickinson3 and by DePriso and Rabitz,4 emphasize research areas developed by these authors. A monograph by Gianturco5 covers theoretical methods for both atomic and molecular collisions. Several contributions on inelastic collisions relating to chemical kinetics may be found in two issues of the Journal of Physical Chemistry,6,7 and also in the proceedings of a subsymposium on molecular collisions and electron scattering. Experimental work closely related to theoretical studies has been covered in reviews by Faubel and Toennies,9 by Bernstein,10 by Gentry,11 and most recently by Loesch.12


Energy Transfer Inelastic Scattering Inelastic Collision Energy Transfer Process Molecular Collision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    “Dynamics of Molecular Collisions”, Parts A and B, W. H. Miller, ed., Plenum, New York (1976).Google Scholar
  2. 2.
    “Dynamics of Molecular Collisions”, Parts A and B, W. H. Miller, ed., Plenum, New York (1976).Google Scholar
  3. 3.
    A. S. Dickinson, Non-reactive heavy particle collision calculations, Comput. Phys. Commun. 17: 51 (1979).CrossRefGoogle Scholar
  4. 4.
    A. E. DePristo and H. Rabitz, Vibrational and rotational collision processes, Advan. Chem. Phys, 42: 271 (1980).CrossRefGoogle Scholar
  5. 5.
    F. A. Gianturco, “The Transfer of Molecular Energies by Collision”, Springer-Verlag, Berlin (1979).Google Scholar
  6. 6.
    “Symposium on Current Status of Kinetics of Elementary Gas Reactions”, J. Phys. Chem. 83: no. 1 (1979).Google Scholar
  7. 7.
    “Don Louis Bunker Memorial Issue”, J. Phys. Chem. 83: no. 8 (1979).Google Scholar
  8. 8.
    “Subsymposium on Electron Scattering and Molecular Collisions”, Int. J. Quantum Chem. Symp. 13 (1979).Google Scholar
  9. 9.
    M. Faubel and J. P. Toennies, Scattering studies of rotational and vibrational excitation of molecules, Advan. At. Mol. Phys. 13: 229 (1977).CrossRefGoogle Scholar
  10. 10.
    R. B. Bernstein, Introduction to atom-molecule collisions: The interdependency of theory and experiment, in reference 2, p. 1.Google Scholar
  11. 11.
    W. R. Gentry, Pulsed molecular beam experiments, in: “Electronic and Atomic Collisions. Invited Papers and Progress Reports”, N. Oda and K. Takayanagi, eds., North-Holland, Amsterdam (1980), p. 807.Google Scholar
  12. 12.
    H. Loesch, Scattering of non-spherical molecules, Advan. Chem. Phys. 42: 421 (1980).CrossRefGoogle Scholar
  13. 13.
    D. A. Micha, Few-body methods in atom-diatom collisions”, in: “Proceedings of the IXth International Conference on Few-Body Problems”, Nucl. Phys., in press.Google Scholar
  14. 14.
    T. F. George, I. H. Zimmermann, J. M. Yuan, J. R. Laing, and P. L. DeVries, A new concept in laser-assisted chemistry: The electron-field representation, Acc. Chem. Res. 10: 449 (1977).CrossRefGoogle Scholar
  15. 15.
    I. V. Hertel and W. Stoll, Collision experiments with laser excited atoms in crossed beams, Advan. At. Mol. Phys. 13: 133 (1977).Google Scholar
  16. 16.
    M. Baer, Adiabatic and diabatic representations for atom-molecule collisions: The three dimensional case, Chem. Phys. 15: 49 (1976).CrossRefGoogle Scholar
  17. 17.
    J. Tully, Nonadiabatic processes in molecular collisions, in reference 1, Part B, p. 217.Google Scholar
  18. 18.
    M. Child, Electronic excitation: Nonadiabatic transitions, in reference 2, p. 247.Google Scholar
  19. 19.
    B. C. Garrett and D. G. Truhlar, The coupling of electronically adiabatic states in atomic and molecular collisions, Theor. Chem.: Advan. Perspectives 6A: 215 (1981).Google Scholar
  20. 20.
    F. T. Smith, Diabatic and adiabatic representations for atomic collision problems, Phys. Rev. 179: 111 (1969).CrossRefGoogle Scholar
  21. 21.
    I. H. Zimmermann and T. F. George, Quantum mechanical study of electronic transitions in collinear atom-molecule collisions, Chem. Phys. 7: 323 (1975).CrossRefGoogle Scholar
  22. 22.
    J. B. Delos and W. R. Thorson, Diabatic and adibatic representations for atomic collision processes, J. Chem. Phys. 70: 1774 (1979).CrossRefGoogle Scholar
  23. 23.
    J. C. Tully, Semiempirical diatotnics-in-molecules potential energy surfaces, Advan. Chem. Phys. 42: 63 (1980).CrossRefGoogle Scholar
  24. 24.
    H. F. Schaefer III, Atom-molecule potentials, in reference 2, p. 45.Google Scholar
  25. 25.
    P. J. Kuntz, Semiempirical atom-molecule potentials for collision theory, in reference 2, p. 79.Google Scholar
  26. 26.
    R. T Pack, Van der Waals coefficients through C8 for atom-linear molecule interactions. I, CO2-noble gas systems, J. Chem. Phys. 64: 1659 (1976).CrossRefGoogle Scholar
  27. G. A. Parker, R. L. Snow, and R. T Pack, Inter-molecular potential surfaces from electron gas methods, I. He-CO2 and Ar-CO2 interactions, J. Chem. Phys. 64: 166 (1976).Google Scholar
  28. 27.
    K. T. Tang and J. P. Toennies, A simple theoretical model for the van der Waals potential at intermediate distances II, J. Chem. Phys. 68: 5501 (1978).CrossRefGoogle Scholar
  29. 28.
    S. A. Adelman and J. D. Doll, Brownian motion and chemical dynamics on solid surfaces, Acc. Chem. Res. 10: 378 (1977).CrossRefGoogle Scholar
  30. 29.
    G. C. Schatz, A generalized Langevin equation approach to molecular collision dynamics, Chem. Phys. 31: 295 (1978).CrossRefGoogle Scholar
  31. 30.
    A. Nitzan, M. Shugard, and J. C. Tully, Stochastic classical trajectory approach to relaxation phenomena II, Vibrational relaxation of impurity molecules in Debye solids, J. Chem. Phys. 69: 2525 (1978).CrossRefGoogle Scholar
  32. 31.
    S. Augustin and H. Rabitz, Multiple time scale stochastic formulation for collision problems with more than one degree of freedom, J. Chem. Phys. 70: 1286 (1979).CrossRefGoogle Scholar
  33. 32.
    R. D. Levine and J. L. Kinsey, Information-theoretic approach: Application to molecular collisions, in reference 2, p. 693.Google Scholar
  34. 33.
    Y. Alhassid and R. Levine, Connection between the maximal entropy and the scattering theoretic analysis of collision processes, Phys. Rev. A 18: 89 (1978).CrossRefGoogle Scholar
  35. 34.
    P. Pechukas, Statistical approximations in collision theory, in reference 1, part B, p. 269.Google Scholar
  36. 35.
    M. Quack and J. Troe, Information, memory, and statistical theories of elementary chemical reactions, Ber. Bunsenges. Phys. Chem. 80: 1140 (1976).CrossRefGoogle Scholar
  37. 36.
    J. C. Light, Complex-mode chemical reactions: Statistical theories of bimolecular reactions, in reference 2, p. 647.Google Scholar
  38. 37.
    W. A. Lester, The N-coupled channel problem, in reference 1, Part A, p. 1.Google Scholar
  39. 38.
    D. Secrest, Rotational excitation: Quantal treatment, in reference 2, p. 265.Google Scholar
  40. 39.
    J. C. Light and R. B. Walker, An R-matrix approach to the solution of coupled equations for atom-molecule reactive scattering, J. Chem. Phys. 65: 4727 (1976).Google Scholar
  41. 40.
    P. L. DeVries and T. F. George, A new propagation method for the radial Schrödinger equation. Application to close-coupled equations, Mol. Phys., in press.Google Scholar
  42. 41.
    L. D. Thomas, Solution of the coupled equations of inelastic atom-molecule scattering for a single initial state, J. Chem. Phys. 70: 2979 (1979).CrossRefGoogle Scholar
  43. 42.
    “Algorithms and Computer Codes for Atomic and Molecular Quantum Scattering Theory”, Vol. II, L. Thomas, ed., University of California report LBL-9501, National Resource for Computation in Chemistry, Berkeley, CA (1980).Google Scholar
  44. 43.
    G. D. Billing, On a semiclassical approach to energy transfer in polyatomic molecules, Chem. Phys. 33: 227 (1978).CrossRefGoogle Scholar
  45. 44.
    K.R. Squire and C. F. Curtiss, Semiclassical series solution of the generalized phase shift atom-diatom scattering equations, J. Chem. Phys. 72: 126 (1980).CrossRefGoogle Scholar
  46. 45.
    K. J. McCann and M. R. Flannery, Multistate semiclassical orbital treatment of Li+-H2 and H+-H2 collisions, Chem. Phys. Lett. 60: 523 (1979).CrossRefGoogle Scholar
  47. 46.
    W. H. Miller and C. W. McCurdy, Classical trajectory model for electronically non-adiabatic collision phenomena, J. Chem. Phys. 69: 5163 (1978).CrossRefGoogle Scholar
  48. 47.
    I. C. Percival, Semiclassical theory of bound states, Advan. Chem. Phys. 36: 1 (1977).CrossRefGoogle Scholar
  49. 48.
    N. C. Handy, S. M. Colwell, and W. H. Miller, Semiclassical methods for vibrational energy levels of triatomic molecules, Disc. Faraday Soc. 62: 29 (1977).CrossRefGoogle Scholar
  50. G. C. Schatz and T. Mulloney, Classical perturbation theory of good action-angle variables. Applications to polyatomic molecules, J. Phys. Chem. 83: 989 (1979).CrossRefGoogle Scholar
  51. 49.
    D. W. Noid, M. L. Koszykowski, and R. A. Marcus, Semiclassical calculation of eigenvalues for a three-dimensional system, J. Chem. Phys. 73: 391 (1980).CrossRefGoogle Scholar
  52. 50.
    M. J. Davis and E. J. Heller, Semiclassical Gaussian basis set method for molecular vibrational wavefunctions, J. Chem. Phys 71: 3383 (1979).CrossRefGoogle Scholar
  53. 51.
    R. N. Porter and L. M. Raff, Classical trajectory methods in molecular collisions, in reference 1, Part B, p. 1.Google Scholar
  54. 52.
    M. D. Pattengill, Rotational excitation: Classical trajectory methods, in reference 2, p. 359.Google Scholar
  55. 53.
    D. G. Truhlar and J. T. Muckerman, Reactive scattering cross sections: Quasiclassical and semiclassical methods, in reference 2, p. 505.Google Scholar
  56. 54.
    D. G. Truhlar and N. C. Blais, Legendre moment method for calculating differential cross sections from classical trajectories, J. Chem. Phys. 67: 1532 (1977).CrossRefGoogle Scholar
  57. 55.
    D. G. Truhlar and J. W. Duff, Classical probability matrix: Prediction of quantum-state distributions by a moment analysis of classical trajectories, Chem. Phys. Lett. 36: 551 (1975).CrossRefGoogle Scholar
  58. I. Procaccia and R. D. Levine, Cross sections for rotational energy transfer: An information theoretic synthesis, J. Chem. Phys. 64: 808 (1976).CrossRefGoogle Scholar
  59. 56.
    W. R. Gentry, Vibrational excitation: Classical and semiclassical methods, in reference 2, p. 391.Google Scholar
  60. 57.
    J. W. Duff and P. Brumer, Exponentiating trajectories and statistical behavior: Three dimensional K + NaCl and H + ICl, J. Chem. Phys. 71: 2693 (1979).CrossRefGoogle Scholar
  61. 58.
    C. Cerjan and W. P. Reinhardt, Critical point analysis of instabilities in Hamiltonian systems: Classical mechanics of stochastic intramolecular energy transfer, J. Chem. Phys. 71: 1819 (1979).CrossRefGoogle Scholar
  62. 59.
    K. G. Kay, Numerical study of intramolecular vibrational energy transfer: Quantal, classical, and statistical behavior, J. Chem. Phys. 72: 5955 (1980).CrossRefGoogle Scholar
  63. 60.
    R. G. Gordon, Rational selection of methods for molecular scattering calculations, Disc. Faraday Soc. 55: 22 (1973).CrossRefGoogle Scholar
  64. 61.
    D. A. Micha, Effective Hamiltonian methods for molecular collisions, Advan. Quantum Chem. 8: 231 (1974).CrossRefGoogle Scholar
  65. 62.
    H. Rabitz, Effective Hamiltonians in molecular collisions, in reference 1, Part B, p. 33.Google Scholar
  66. 63.
    G. G. Balint-Kurti, The theory of rotationally inelastic molecular collisions, MTP Int. Rev. Science, Physical Chemistry, Series Two, 1: 285 (1975).Google Scholar
  67. 64.
    D. A. Micha, Optical models in molecular collision theory, in reference 1, Part A, p. 81.Google Scholar
  68. 65.
    V. Khare, On the lz-conserving energy sudden approximation for atom-diatom scattering, J. Chem. Phys. 68: 4631 (1978).CrossRefGoogle Scholar
  69. V. Khare, On the equivalence of the space-fixed and body-fixed formulations of the jz-conserving approximation, J. Chem. Phys. 67: 3897 (1977).CrossRefGoogle Scholar
  70. 66.
    D. J. Kouri, Rotational excitation: Approximation methods, in reference 2, p. 301.Google Scholar
  71. 67.
    R. Schinke, Theoretical studies of vibrational excitation in Li+-H2 collisions at intermediate energies, Chem. Phys. 34: 65 (1978).CrossRefGoogle Scholar
  72. 68.
    J. M. Bowman, Rotational rainbows in inelastic atom-molecule differential cross sections, Chem. Phys. Lett. 62: 309 (1979).CrossRefGoogle Scholar
  73. 69.
    H. J. Korsch and R. Schinke, A uniform semiclassical sudden approximation for rotationally inelastic scattering, J. Chem. Phys. 73: 1222 (1980).CrossRefGoogle Scholar
  74. 70.
    V. Khare and D. J. Kouri, Time-reversal symmetry for magnetic transitions in rotationally inelastic scattering, J. Chem. Phys. 72: 2007 (1980).CrossRefGoogle Scholar
  75. 71.
    G. A. Parker and R. T Pack, Rotationally and vibrationally inelastic scattering in a rotational 10S approximation: Ultra-simple calculations for non-spherical molecules, J. Chem. Phys. 68: 1585 (1978).CrossRefGoogle Scholar
  76. 72.
    R. B. Gerber, A. T. Yinnon, Y. Shimoni, and D. J. Kouri, Rotationally inelastic molecule-surface scattering in the sudden approximation, J. Chem. Phys. 73: 4397 (1980).CrossRefGoogle Scholar
  77. 73.
    M. H. Alexander, Sudden theories of rotationally inelastic LiH-HCl and LiH-DCl collisions, J. Chem. Phys. 71: 1683 (1979).CrossRefGoogle Scholar
  78. 74.
    K. Takayanagi, Low energy ion-polar molecule collisions: The perturbed rotational state approach, J. Phys. Soc. Japan 45: 976 (1978); Low energy ion-polar molecule collisions II, University of Tokyo Institute of Space and Aeronautical Science report 77 (1979).CrossRefGoogle Scholar
  79. 75.
    K. Sakimoto and K. Takayanagi, Influence of the dipole interaction on low-energy ion-molecule reactions, J. Phys. Soc. Japan 48: 2076 (1980).CrossRefGoogle Scholar
  80. 76.
    N. A. Mullaney and D. G. Truhlar, The use of rotationally and orbitally adiabatic basis functions to calculate rotational excitation cross sections for atom-molecule collisions, Chem. Phys. 39: 91 (1979).CrossRefGoogle Scholar
  81. 77.
    M. Baer, G. Drolshagen, and J. P. Toennies, The adiabatic-diabatic approach to vibrational inelastic scattering. I. Theory and study of a simple collinear model, J. Chem. Phys. 73: 1690 (1980).CrossRefGoogle Scholar
  82. N. M. Harvey and D. G. Truhlar, Use of vibrationally adiabatic basis functions for inelastic atom-molecule scattering, Chem. Phys. Lett. 74: 252 (1980).CrossRefGoogle Scholar
  83. 78.
    J. Cross, The adiabatic semiclassical perturbation theory for vibrationally inelastic scattering, J. Chem. Phys. 71: 1426 (1979).CrossRefGoogle Scholar
  84. 79.
    L. Eno and G. G. Balint-Kurti, The adiabatic distorted wave infinite order sudden approximation for inelastic molecular collisions, J. Chem. Phys. 71: 1447 (1979).CrossRefGoogle Scholar
  85. 80.
    M. H. Alexander and A. E. DePristo, An adiabatically corrected sudden approximation for rotationally inelastic collisions between polar molecules, J. Phys. Chem. 83: 1499 (1979).CrossRefGoogle Scholar
  86. 81.
    J. C. Tully, Nonadiabatic processes in molecular collisions, in reference 1, Part B, p. 217; M. Child, Electronic excitation: Nonadiabatic transitions, in reference 2, p. 427; K. S. Lam and T. F. George, in: “Semiclassical Methods in Molecular Scattering and Spectroscopy”, M. S. Child, ed., Reidel, Boston (1980).Google Scholar
  87. 82.
    F. Rebentrost and W. A. Lester, Nonadiabatic effects in the collision of F(2P) with \(H_{2}(^{1}\sum_{g}^{+})\). III. Scattering theory and coupled-channel computation, J. Chem. Phys. 67: 1302 (1977).CrossRefGoogle Scholar
  88. 83.
    R. E. Wyatt and R. B. Walker, Quantum mechanics of electronic-rotational energy transfer in F(2P) + H2 collisions, J. Chem. Phys. 70: 1501 (1979).CrossRefGoogle Scholar
  89. 84.
    H.-D. Meyer and W. H. Miller, Classical models for electronic degrees of freedom: Derivation via spin analogy and application to F* + H2 → F + H2, J. Chem. Phys. 71: 2156 (1979).CrossRefGoogle Scholar
  90. 85.
    P. McGuire and J. Bellum, Electronic to vibrational energy transfer in collisions of excited sodium with molecular hydrogen, J. Chem. Phys. 71: 1975 (1979).CrossRefGoogle Scholar
  91. 86.
    H. Taylor, Electronic to vibrational energy transfer in Na(32P) interactions with simple molecules, Chem. Phys. Lett. 64: 17 (1979).CrossRefGoogle Scholar
  92. 87.
    C. Bottcher, Excited state potentials and their applications, Advan. Chem. Phys. 42: 169 (1980).CrossRefGoogle Scholar
  93. 88.
    M. S. Child and M. Baer, A model for reactive non-adiabatic transitions: Comparison between exact numerical and approximate analytical results, J. Chem. Phys., in press.Google Scholar
  94. 89.
    S. Stolte and J. Reuss, Elastic scattering cross sections: Non-central potentials, in reference 2, p. 201.Google Scholar
  95. 90.
    U. Buck, V. Khare, and M. Kick, Anisotropic potentials from rainbow scattering of sodium atoms by tetrahedral molecules, Mol. Phys. 35: 65 (1978).CrossRefGoogle Scholar
  96. 91.
    W. Schepper, U. Ross, and D. Beck, Anisotropy of the repulsive intermolecular potential from rotationally inelastic scattering, Z. Physik A 290: 131 (1979).CrossRefGoogle Scholar
  97. D. Beck, U. Ross, and W. Schepper, Isotope shift in the bulge effect of molecular scattering, Phys. Rev. A 19: 2173 (1979).CrossRefGoogle Scholar
  98. 92.
    U. Buck, F. Huisken, J. Schleusener, and J. Schafer, Differential cross sections for the j = 0 → 1 rotational excitation in the HD-Ne collisions and their relevance to the anisotropic interaction, J. Chem. Phys. 72: 1512 (1980).CrossRefGoogle Scholar
  99. 93.
    R. G. Gerber, V. Buck, and U. Buck, Direct inversion method for obtaining anisotropic potentials from rotationally inelastic and elastic cross sections, J. Chem. Phys. 72: 3596 (1980).CrossRefGoogle Scholar
  100. 94.
    J.-T. Hwang and H. Rabitz, The Green’s function method of sensitivity analysis in quantum dynamics, J. Chem. Phys. 70: 4609 (1979).CrossRefGoogle Scholar
  101. 95.
    L. Eno and H. Rabitz, Generalized sensitivity analysis in quantum collision theory, J. Chem. Phys. 71: 4824 (1979).CrossRefGoogle Scholar
  102. L. Eno and H. Rabitz, Sensitivity analysis of rotational energy transfer processes to the inter-molecular potential, J. Chem. Phys. 72: 2314 (1980).CrossRefGoogle Scholar
  103. 96.
    E. O. Alt, P. Grassberger, and W. Sandhas, Reduction of the three-particle collision problem to multichannel two-particle Lippmann-Schwinger equations, Nucl. Phys. B2: 167 (1967).CrossRefGoogle Scholar
  104. 97.
    D. A. Micha, Role of molecular momentum distributions in impulsive collisions. Ber. Bunsenges. Phys. Chem. 81: 162 (1977).CrossRefGoogle Scholar
  105. 98.
    L. H. Beard and D. A. Micha, Collision dynamics of three interacting atoms: Energy transfer and dissociation in collinear motions, J. Chem. Phys. 73: 1193 (1980).CrossRefGoogle Scholar
  106. 99.
    K. C. Kulander, Collision induced dissociation in collinear H + H2: Quantum mechanical probabilities using the time-dependent wavepacket approach, J. Chem. Phys. 69: 5064 (1978).CrossRefGoogle Scholar
  107. J. C. Gray, G. A. Fraser, D. G. Truhlar, and K. C. Kulander, Quasiclassical trajectory and quantal wavepacket calculations for vibrational energy transfer at energies above the dissociation threshold, J. Chem. Phys. 73: 5726 (1980).CrossRefGoogle Scholar
  108. 100.
    J. A. Kaye and A. Kuppermann, Quantum mechanical collision-induced dissociation calculations with hyperspherical coordinates, J. Chem. Phys., in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • David A. Micha
    • 1
  1. 1.Departments of Chemistry and of PhysicsUniversity of FloridaGainesvilleUSA

Personalised recommendations