Skip to main content

Theoretical Studies of Reactions at Transition Metal Centers

  • Chapter

Abstract

For normal organic molecules, systematic studies in recent years have established the level of theoretical description* required to obtain reliable geometries,1-3 relative energies of isomers,3-5 excitation energies, and even bond energies.6-8 Considerations here are the type of basis set9 (minimal basis or STO-3G versus double zeta or 4-31G versus inclusion of polarization functions) and the levels of electron correlation (generalized valence bond, configuration interaction, or many-body perturbation theory) or lack of correlation (Hartree-Fock). Some of these considerations are outlined in other chapters in this book. However, for molecules containing transition metals there is yet much uncertainty concerning these matters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Bell, The effects of basis set and configuration interaction on the predicted geometries of AH2 molecules, J. (Them. Phys. 68: 3014 (1978).

    CAS  Google Scholar 

  2. D. Cremer, Theoretical determination of molecular structure and conformation. I. The role of basis set and correlation effects in calculations on hydrogen peroxide, J. Chem. Phys. 69: 4440 (1978).

    Article  CAS  Google Scholar 

  3. C. A. Parsons and C. E. Dykstra, Electron correlation and basis set effects in unimolecular reactions. A study of the model rearrangement system N2H2, J. Chem. Phys. 71: 3025 (1979).

    Article  CAS  Google Scholar 

  4. J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, Electron correlation theories and their application to the study of simple reaction potential surfaces, Int. J. Quantum Chem. 14: 545 (1978).

    Article  CAS  Google Scholar 

  5. C. J. Casewit and W. A. Goddard III, Thermochemistry of transdiimide and 1,1-diazne. Ab initio studies, J. Amer. Chem. Soc. 102: 4057 (1980).

    Article  CAS  Google Scholar 

  6. J. H. Davis, W. A. Goddard III, and L. B. Harding, Theoretical studies of the low-lying states of vinylidene, J. Amer. Chem. Soc. 99: 2919 (1977).

    Article  CAS  Google Scholar 

  7. L. B. Harding and W. A. Goddard III, Intermediates in the chemiluminescent reaction of singlet oxygen with ethylene. Ab initio studies, J. Amer. Chem. Soc. 99: 4520 (1977).

    Article  CAS  Google Scholar 

  8. M. L. Steigerwald and W. A. Goddard III, unpublished results; R. A. Bair and W. A. Goddard III, unpublished results.

    Google Scholar 

  9. T. H. Dunning, Jr. and P. J. Hay, Gaussian basis sets for molecular calculations, in: “Methods of Electronic Structure Theory”, H. F. Schaefer III, ed., Plenum, New York (1977), p. 1.

    Google Scholar 

  10. E. L. Hehler and C. H. Paul, Small Gaussian basis sets for Ab initio calculations on large molecules, Chem. Phys. Lett. 63: 145 (1979).

    Article  Google Scholar 

  11. H. Tatewaki and S. Huzinaga, A systematic preparation of new contracted Gaussian-type orbital set. 1. Transition metal atoms from Sc to Zn, J. Chem. Phys. 71: 4339 (1979).

    Article  CAS  Google Scholar 

  12. D. F. Feller and K. Reudenberg, Systematic approach to extended even-tempered orbital bases for atomic and molecular calculations, Theoret. Chim. Acta 52: 231 (1979).

    Article  CAS  Google Scholar 

  13. M. W. Schmidt, and K. Ruedenberg, Effective convergence to complete orbital bases and to the atomic Hartree-Fock limit through systematic sequences of Gaussian primitives, J. Chem. Phys. 71: 395 (1979).

    Google Scholar 

  14. T. A. Smedley, A. K. Rappé, and W. A. Goddard III, Flexible D basis sets for Sc through Cu, J. Phys. Chem., submitted for publication; (b) A. K. Rappé and W. A. Goddard III, Flexible double zeta Gaussian basis sets for H-Ba, manuscript in preparation.

    Google Scholar 

  15. P. J. Hay, Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition-metal atoms, J. Chem. Phys. 66: 4377 (1977).

    Article  CAS  Google Scholar 

  16. B. R. Brooks and H. F. Schaefer III, A model transition metal-carbene system MnCH2, Mol. Phys. 34: 193 (1977).

    Article  CAS  Google Scholar 

  17. A. K. Rappe, T. A. Smedley, and W. A. Goddard III, The shape and Hamiltonian consistent (SHC) effective potentials, J. Phys. Chem., submitted for publication.

    Google Scholar 

  18. F. W. Bobrowicz and W. A. Goddard III, The self-consistent-field equations for generalized valence bond and open-shell Hartree-Fock wavefunctions, in: “Methods of Electronic Structure Theory”, H. F. Schaefer III, ed., Plenum, New York (1979), p. 79.

    Google Scholar 

  19. I. Shavitt, The method of configuration interaction, in: “Methods of Electronic Structure Theory”, H. F. Shaefer III, ed., Plenum, New York (1977), p. 189.

    Chapter  Google Scholar 

  20. For a review on the HF calculation of the energetics of “isodesmic” reactions, see W. J. Hehre, Ab initio molecular orbital theory, Acc. Chem. Res. 9: 399 (1976).

    Article  CAS  Google Scholar 

  21. P. Schlodder, J. A. Ibers, M. Lenarda, and M. Graziani, Structure and mechanism of formation of the metallooxacyclobutane complex Pt[C2(CN)4O] [As (C6H5) 3]2, the product of the reaction between tetracyanooxirane and Pt[As(C6H5)3]4, J. Amer. Chem. Soc. 96: 6893 (1974).

    Article  CAS  Google Scholar 

  22. R. H. Grubbs and A. Miyashita, Metallacycles in organotransition metal chemistry, Fundamental Research in Homogeneous Catalysis 2: 207 (1977).

    Google Scholar 

  23. R. H. Grubbs and A. Miyashita, The relationship between metallacyclopentanes and bis-olefin-metal complexes, J. Amer. Chem. Soc. 100: 1300 (1978).

    Article  CAS  Google Scholar 

  24. S. J. McLain and R. R. Schrock, Selective olefin dimerization via tantallocyclopentane complexes, J. Amer. Chem. Soc. 100: 1315 (1978); I. M. Al-Najjar, M. Greene, S. J. S. Kerrison, and P. J. Sadler, Platinum complex containing a four-membered ring, J. Chem. Soc. Chem. Commun. 311 (1979).

    Article  CAS  Google Scholar 

  25. J. L. Harrison and Y. Chauvin, Catalyse de transformation des oléfines par les complexes du tungstène. II. Télémerisation de oléfines en présence d’oléfines acycliques, Makromol. Chem. 141: 161 (1970).

    Google Scholar 

  26. R. H. Grubbs, The olefin metathesis reaction, Prof. Inorg. Chem. 24: 1 (1978).

    Article  CAS  Google Scholar 

  27. N. Calderon, J. P. Lawrence, and E. A. Ofstead, Olefin metathesis, Advan. Organomet. Chem. 17: 449 (1979).

    Article  CAS  Google Scholar 

  28. For a preliminary account of this work, see A. K. Rappé and W. A. Goddard, Bivalent spectator oxo bonds in metathesis and epoxidation of alkenes, Nature 285: 311 (1980).

    Article  Google Scholar 

  29. A. K. Rappé and W. A. Goddard, Mechansim of metathesis and epoxidation in Cr and Mo complexes containing oxo bonds, J. Amer. Chem. Soc. 102: 5114 (1980).

    Article  Google Scholar 

  30. A. K. Rappé, Ph.D. thesis, California Institute of Technology, Pasadena, 1980.

    Google Scholar 

  31. J. M. Basset, G. Coudurier, R. Mutin, H. Proliaud, and Y. Trambouze, Effect of oxygen on metathesis of cis-2-pentene by a binary catalyst system of W(CO)5P(C6H5)3 and (C2H5)AlCl2, J. Catal. 34: 196 (1974).

    Article  CAS  Google Scholar 

  32. M. T. Mocella, R. Rovner, and E. L. Muetterties, Mechanism of the olefin metathesis reaction. 4. Catalyst precursors in tungsten(VI) based systems, J. Amer. Chem. Soc. 98: 1689 (1976).

    Google Scholar 

  33. J. R. M. Kress, M. J. Russell, M. G. Wesolek, and J. A. Osborn, Tungsten (VI) and molybdenum (VI) oxo-alkyl species. Their role in the metathesis of olefins, J. Chem. Soc. Chem. Commun. 431 (1980).

    Google Scholar 

  34. R. A. Walton, Halides and oxyhalides of the early transition series and their stability and reactivity in nonaqueous media, Prog. Inorg. Chem. 16: 1 (1972).

    Article  CAS  Google Scholar 

  35. R. R. Schrock, Alkylidene complexes of niobium and tantalum, Acc. Chem. Res. 12: 98 (1979).

    Article  CAS  Google Scholar 

  36. R. Schrock, S. Rocklage, J. Wengrovious, G. Rupprecht, and J. Fellmann, Preparation and characterization of active niobium, tantalum, and tungsten metathesis catalysts, J. Mol. Catal. 8: 73 (1980).

    Article  CAS  Google Scholar 

  37. J. H. Wengrovious, R. R. Schrock, M. R. Churchill, J. R. Missert, and W. J. Youngs, Tungsten-oxo alkylidene complexes as olefin metathesis catalysts and the crystal structure of W(O)(CHCMe3)(PEt3)Cl2, J. Amer. Chem. Soc. 102: 4515 (1980).

    Article  Google Scholar 

  38. J. Fathiakalajaji and G. B. Willis, Effects of ammonia upon propylene metathesis over a WO3-SiO2 catalyst, J. Mol. Catal. 8: 127 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rappé, A.K., Goddard, W.A. (1981). Theoretical Studies of Reactions at Transition Metal Centers. In: Truhlar, D.G. (eds) Potential Energy Surfaces and Dynamics Calculations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1735-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1735-8_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1737-2

  • Online ISBN: 978-1-4757-1735-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics