Determination of the Bottleneck Regions of Potential Energy Surfaces for Atom Transfer Reactions by Variational Transition State Theory

  • Bruce C. Garrett
  • Donald G. Truhlar
  • Roger S. Grev

Abstract

A major difficulty in the calculation of reliable equilibrium rate constants for gas-phase bimolecular reactions is the lack of accurate information about potential energy surfaces. The calculation of accurate, detailed dynamical quantities such as inelastic and reactive cross sections requires a knowledge of the potential energy surface over large regions of the configuration space. Thermal rate constants represent an average of such detailed dynamical quantities, and as a result they are less sensitive to fine features of the surface. Thus accurate thermal rate constants may be calculated using less information about the potential surfaces than is required to calculate more detailed quantities; one of the goals of the present chapter is to discuss which regions of the surfaces are most important in controlling the rates of chemical reactions.

Keywords

Partition Function Saddle Point Potential Energy Surface Transition State Theory Kinetic Isotope Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Glasstone, K. J. Laidler, and H. Eyring, “Theory of Rate Processes”, McGraw-Hill, New York (1941).Google Scholar
  2. H. S. Johnston, “Gas Phase Reaction Rate Theory”, Ronald Press, New York (1966).Google Scholar
  3. D. L. Bunker, “Theory of Gas Phase Reaction Rates”, Pergamon Press, Oxford (1966).Google Scholar
  4. K. J. Laidler, “Theories of Chemical Reaction Rates”, McGraw-Hill, New York (1969).Google Scholar
  5. 2.
    E. Wigner, Calculation of the rate of elementary association reactions, J. Chem. Phys. 5: 720 (1937).CrossRefGoogle Scholar
  6. 3.
    J. Horiuti, On the statistical mechanical treatment of the absolute rate of chemical reaction, Bull. Chem. Soc. Japan 13: 210 (1938).CrossRefGoogle Scholar
  7. 4.
    J. C. Keck, Variational theory of chemical reaction rates applied to three-body recombinations, J. Chem. Phys. 32: 1035 (1960).CrossRefGoogle Scholar
  8. 5.
    J. C. Keck, Variational theory of reaction rates, Advan. Chem. Phys. 13: 85 (1967).CrossRefGoogle Scholar
  9. 6.
    P. Pechukas, Statistical approximations in collision theory, in: “Dynamics of Molecular Collisions, Part B”, W. H. Miller, ed., Plenum, New York (1976), p. 269.CrossRefGoogle Scholar
  10. 7.
    E. Pollak and P. Pechukas, Transition states, trapped trajectories, and classical bound states embedded in the continuum, J. Chem. Phys. 69: 1218 (1978).CrossRefGoogle Scholar
  11. 8.
    B. C. Garrett and D. G. Truhlar, Criterion of minimum state density in the transition state theory of bimolecular reactions, J. Chem. Phys. 70: 1593 (1979).CrossRefGoogle Scholar
  12. 9.
    B. C. Garrett and D. G. Truhlar, Generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules, J. Phys. Chem. 83: 1052, 3058(E) (1979).Google Scholar
  13. 10.
    K. Morokuma and M. Karplus, Collision dynamics and the statistical theories of chemical reactions. II. Comparison of reaction probabilities, J. Chem. Phys. 55: 63 (1971).CrossRefGoogle Scholar
  14. 11.
    G. W. Koeppl and M. Karplus, Comparison of 3D classical trajectory and transition-state theory reaction cross sections, J. Chem. Phys. 55: 4667 (1971).CrossRefGoogle Scholar
  15. 12.
    P. Pechukas and F. J. McLafferty, On transition-state theory and the classical mechanics of collinear collisions, J. Chem. Phys. 58: 1622 (1973).CrossRefGoogle Scholar
  16. 13.
    S. Chapman, S. M. Hornstein, and W. H. Miller, Accuracy of transition state theory for the threshold of chemical reactions with activation energy. Collinear and three-dimensional H + H2, J. Amer. Chem. Soc. 97: 892 (1975).CrossRefGoogle Scholar
  17. 14.
    W. J. Chesnavich, On the threshold behavior of collinear bimolecular exchange reactions, Chem. Phys. Lett. 53: 300 (1978).CrossRefGoogle Scholar
  18. 15.
    B. C. Garrett and D. G. Truhlar, Improved canonical variational theory for chemical reaction rates. Classical mechanical theory and applications to collinear reactions, J. Phys. Chem. 84: 805 (1980).CrossRefGoogle Scholar
  19. 16.
    E. Wigner, The transition state method, Trans. Faraday Soc. 34: 29 (1938).CrossRefGoogle Scholar
  20. 17.
    W. H. Miller, Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants, J. Chem. Phys. 61: 1823 (1974).CrossRefGoogle Scholar
  21. 18.
    W. H. Miller, Semiclassical limit of quantum mechanical transition state theory for nonseparable systems, J. Chem. Phys. 62: 1899 (1975).CrossRefGoogle Scholar
  22. 19.
    W. H. Miller, Path integral representation of the reaction rate constant in quantum mechanical transition state theory, J. Chem. Phys. 63: 1166 (1975).CrossRefGoogle Scholar
  23. 20.
    D. G. Truhlar, Accuracy of trajectory calculations and transition state theory for thermal rate constants of atom transfer reactions, J. Phys. Chem. 83: 188 (1979).CrossRefGoogle Scholar
  24. 21.
    B. C. Garrett and D. G. Truhlar, Accuracy of tunneling corrections to transition state theory for thermal rate constants of atom transfer reactions, J. Phys. Chem. 83: 200, 3058(E) (1979).Google Scholar
  25. 22.
    B. C. Garrett and D. G. Truhlar, Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules and isotopically substituted hydrogen molecules, J. Phys. Chem. 83: 1079 (1979).CrossRefGoogle Scholar
  26. B. C. Garrett and D. G. Truhlar, Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules and isotopically substituted hydrogen molecules, J. Phys. Chem. 84: 682(E) (1980).Google Scholar
  27. 23.
    B. C. Garrett, D. G. Truhlar, R. S. Grev, and A. W. Magnuson, Improved treatment of threshold contributions in variational transition-state theory, J. Phys. Chem. 84: 1730 (1980).CrossRefGoogle Scholar
  28. 24.
    B. C. Garrett, D. G. Truhlar, and R. S. Grev, Applications of variational transition-state theory and the unified statistical model to H + Cl2 → HCl + Cl, J. Phys. Chem. 84: 1749 (1980).CrossRefGoogle Scholar
  29. 25.
    B. C. Garrett, D. G. Truhlar, R. S. Grev, and R. B. Walker, Comparison of variational transition state theory and the unified statistical model with vibrationally adiabatic transmission coefficients to accurate collinear rate constants for T + HD → TH + D, J. Chem. Phys. 73: 235 (1980).CrossRefGoogle Scholar
  30. 26.
    B. C. Garrett, D. G. Truhlar, R. S. Grev, A. W. Magnuson, and J. N. L. Connor, Variational transition state theory, vibrationally adiabatic transmission coefficients, and the unified statistical model tested against accurate quantum rate constants for collinear F + H2, H + F2, and isotopic analogs, J. Chem. Phys. 73: 1721 (1980).CrossRefGoogle Scholar
  31. 27.
    B. C. Garrett and D. G. Truhlar, Generalized transition state theory calculations for the reactions D + H2 and H + D2 using an accurate potential energy surface: Explanation of the kinetic isotope effect, J. Chem. Phys. 72: 3460 (1980).CrossRefGoogle Scholar
  32. 28.
    B. C. Garrett and D. G. Truhlar, Reliable Ab initio calculation of a chemical reaction rate and a kinetic isotope effect: H + H2 and 2H + 2H2, Proc. Natl. Acad. Sci. USA 76: 4755 (1979).CrossRefGoogle Scholar
  33. 29.
    B. Liu, Ab initio potential energy surface for linear H3, J. Chem. Phys. 58: 1925 (1973).CrossRefGoogle Scholar
  34. 30.
    P. Siegbahn and B. Liu, An accurate three-dimensional potential energy surface for H3, J. Chem. Phys. 68: 2457 (1978).CrossRefGoogle Scholar
  35. 31.
    D. G. Truhlar and C. J. Horowitz, Functional representation of Liu and Siegbahn’s accurate Ab initio potential energy calculations for H + H2, J. Chem. Phys. 68: 2466 (1978).CrossRefGoogle Scholar
  36. D. G. Truhlar and C. J. Horowitz, Functional representation of Liu and Siegbahn’s accurate Ab initio potential energy calculations for H + H2, J. Chem. Phys. 71: 1514(E) (1979).CrossRefGoogle Scholar
  37. 32.
    D. G. Truhlar and B. C. Garrett, Variational transition state theory, Acc. Chem. Res. 13: 440 (1980).CrossRefGoogle Scholar
  38. 33.
    B. C. Garrett and D. G. Truhlar, Generalized transition state theory. Bond-energy-bond-order method for canonical variational calculations with applications to hydrogen atom transfer reactions, J. Amer. Chem. Soc. 101: 4534 (1979).CrossRefGoogle Scholar
  39. 34.
    B. C. Garrett and D. G. Truhlar, Generalized transition state theory. Canonical variational calculations using the bond-energy-bond-order method for bimolecular reactions of combustion products, J. Amer. Chem. Soc. 101: 5207 (1979).CrossRefGoogle Scholar
  40. 35.
    B. C. Garrett and D. G. Truhlar, Variational transition state theory. Primary kinetic isotope effects for atom transfer reactions, J. Amer. Chem. Soc. 102: 2559 (1980).CrossRefGoogle Scholar
  41. 36.
    B. C. Garrett, D. G. Truhlar, and A. W. Magnuson, Variational transition state theory and vibrationally adiabatic transmission coefficients for the kinetic isotope effects in the Cl-H-H reaction system, J. Chem. Phys. 74: 1029 (1981).CrossRefGoogle Scholar
  42. 37.
    S. Chapman, B. C. Garrett, and W. H. Miller, Semiclassical transition state theory for nonseparable systems: Application to the collinear H + H2 reaction, J. Chem. Phys. 63: 2710 (1975).CrossRefGoogle Scholar
  43. 38.
    See also H. S. Johnston and D. Rapp, Large tunneling corrections in chemical reaction rates. II, J. Amer. Chem. Soc. 83: 1 (1961) and reference 39.CrossRefGoogle Scholar
  44. 39.
    E. Wigner, Über das Überschreiten von Potentialschwellen bei chemischen Reaktionen, Z. Phys. Chem. B 19: 203 (1932).Google Scholar
  45. 40.
    D. G. Truhlar and A. Kuppermann, Exact tunneling calculations, J. Amer. Chem. Soc. 93: 1840 (1971).CrossRefGoogle Scholar
  46. 41.
    D. G. Truhlar, The adiabatic theory of chemical reactions, J. Chem. Phys. 53: 2041 (1970), and references therein.CrossRefGoogle Scholar
  47. 42.
    R. A. Marcus and M. E. Coltrin, A new tunneling path for reactions such as H + H2 → H + H, J. Chem. Phys. 67: 2609 (1977).CrossRefGoogle Scholar
  48. 43.
    For a review see P. Pulay, Direct use of the gradient for investigating molecular energy surfaces, in: “Applications of Electronic Structure Theory”, H. F. Schaefer, ed., Plenum, New York (1977), p. 153.CrossRefGoogle Scholar
  49. 44.
    J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkeley, Derivative studies in Hartree-Fock and Møller-Plesset theories, Int. J. Quantum Chem. Symp. 13: 255 (1979).Google Scholar
  50. 45.
    B. C. Garrett and D. G. Truhlar, Importance of quartic anharmonicity for bending partition functions in transition state theory, J. Phys. Chem. 83: 1915 (1979).CrossRefGoogle Scholar
  51. 46.
    For further discussion see D. G. Truhlar, discussion remarks, J. Phys. Chem. 83: 199 (1979).CrossRefGoogle Scholar
  52. 47.
    R. L. Jaffe, J. M. Henry, and J. B. Anderson, Variational theory of reaction rates: Application to F + H2 ⇌ FH + H, J. Chem. Phys. 59: 1128 (1973).CrossRefGoogle Scholar
  53. 48.
    G. W. Koeppl, Alternative locations for the dividing surface of transition state theory. Implications for application of the theory, J. Amer. Chem. Soc. 96: 6539 (1974).CrossRefGoogle Scholar
  54. 49.
    W. H. Miller, Unified statistical model for “complex” and “direct” reaction mechanisms, J. Chem. Phys. 65: 2216 (1976).CrossRefGoogle Scholar
  55. 50.
    G. Koeppl, progress report for Alfred P. Sloan Fellowship for Basic Research, Nov. 9, 1977 (unpublished).Google Scholar
  56. 51.
    E. Pollak and P. Pechukas, Unified statistical model for “complex” and “direct” reaction mechanisms: A test of the collinear H + H2 exchange reaction, J. Chem. Phys. 70: 325 (1979).CrossRefGoogle Scholar
  57. 52.
    P. Pechukas and E. Pollak, Classical transition state theory is exact if the transition state is unique, J. Chem. Phys. 71: 2062 (1979).CrossRefGoogle Scholar
  58. 53.
    J. P. Davis, A combined dynamical-statistical approach to calculating rates of complex bimolecular exchange reactions, J. Chem. Phys. 71: 5206 (1979).CrossRefGoogle Scholar
  59. 54.
    J. P. Davis, A combined statistical-dynamical approach to calculating rates of complex bimolecular exchange reactions: Asymmetric systems, J. Chem. Phys. 73: 2010 (1980).CrossRefGoogle Scholar
  60. 55.
    W. J. Chesnavich, T. Su, and M. T. Bowers, Ion-dipole collisions: Recent theoretical advances, in: “Kinetics of Ion-Molecule Reactions”, P. Ausloos, ed., Plenum, New York (1979), p. 31.CrossRefGoogle Scholar
  61. 56.
    W. J. Chesnavich, T. Su, and M. T. Bowers, Collisions in a non-central field: A variational and trajectory investigation of ion-dipole capture, J. Chem. Phys. 72: 2641 (1980).CrossRefGoogle Scholar
  62. 57.
    B. C. Garrett and D. G. Truhlar, Improved canonical variational theory for chemical reaction rates. Classical mechanical theory and applications to collinear reactions, J. Phys. Chem. 84: 805 (1980).CrossRefGoogle Scholar
  63. 58.
    E. Pollak, M. S. Child, and P. Pechukas, Classical transition state theory: A lower bound to the reaction probability, J. Chem. Phys. 72: 1669 (1980).CrossRefGoogle Scholar
  64. 59.
    E. Pollak and R. D. Levine, Statistical theories for molecular collisions: A maximum entropy derivation, J. Chem. Phys. 72: 2990 (1980).CrossRefGoogle Scholar
  65. 60.
    J. B. Anderson, Statistical theories of chemical reactions. Distributions in the transition region, J. Chem. Phys. 58: 4684 (1973).CrossRefGoogle Scholar
  66. 61.
    B. C. Garrett and D. G. Truhlar, unpublished.Google Scholar
  67. 62.
    E. K. Grimmelman and L. L. Lohr, On the exactness of classical transition state theory for collinear reactions, Chem. Phys. Lett. 48: 487 (1977).CrossRefGoogle Scholar
  68. 63.
    D. I. Sverdlik and G. W. Koeppl, An energy limit of transition state theory, Chem. Phys. Lett. 59: 449 (1978).CrossRefGoogle Scholar
  69. 64.
    D. I. Sverdlik, G. P. Stein, and G. W. Koeppl, The accuracy of transition state theory in its absolute rate, theory and variational formulations, Chem. Phys. Lett. 67: 87 (1979).CrossRefGoogle Scholar
  70. 65.
    D. Martin and L. M. Raff, A general procedure for classical variational rate calculations for three-body exchange reactions, J. Chem. Phys., submitted for publication.Google Scholar
  71. 66.
    D. G. Truhlar and A. Kuppermann, Exact and approximate quantum mechanical reaction probabilities and rate constants for the collinear H + H2 reaction, J. Chem. Phys. 56: 2232 (1972).CrossRefGoogle Scholar
  72. 67.
    J. Troe, Unimolecular reactions, Int. Rev. Sci., Phys. Chem. Ser. Two 9: 1 (1976).Google Scholar
  73. 68.
    M. Quack and J. Troe, Unimolecular reactions and energy transfer of highly excited molecules, Specialist Periodical Reports Chem. Soc. Gas Kinetics and Energy Transfer 2: 175 (1977), and references therein.CrossRefGoogle Scholar
  74. 69.
    W. J. Chesnavich, L. Bass, T. Su, and M. T. Bowers, Multiple transition states In unimolecular reactions: A transition state switching model. Application to the C4H8 + system, preprint.Google Scholar
  75. 70.
    C. A. Parr and D. G. Truhlar, Potential energy surfaces for atom transfer reactions involving hydrogens and halogens, J. Chem. Phys. 75: 1844 (1971).CrossRefGoogle Scholar
  76. 71.
    D. G. Truhlar and R. E. Wyatt, H + H2: Potential energy surfaces and elastic and inelastic scattering, Advan. Chem. Phys. 36: 141 (1977).CrossRefGoogle Scholar
  77. 72.
    F. T. Wall and R. N. Porter, General potential-energy function for exchange reactions, J. Chem. Phys. 36: 3256 (1962).CrossRefGoogle Scholar
  78. 73.
    J. W. Duff and D. G. Truhlar, Effect of curvature of the reaction path on dynamic effects in endothermic reactions and product energies in exothermic reactions, J. Chem. Phys. 62: 2477 (1975).CrossRefGoogle Scholar
  79. 74.
    R. N. Porter and M. Karplus, Potential energy surface for H3, J. Chem. Phys. 40: 1105 (1964).CrossRefGoogle Scholar
  80. 75.
    L. M. Raff, L. Stivers, R. N. Porter, D. L. Thompson, and L. B. Sims, Semiempirical VB calculation of the (H2I2) interaction potential, J. Chem. Phys. 52: 3449 (1970).CrossRefGoogle Scholar
  81. L. M. Raff, L. Stivers, R. N. Porter, D. L. Thompson, and L. B. Sims, Semiempirical VB calculation of the (H2I2) interaction potential, J. Chem. Phys. 58: 1271(E) (1973).CrossRefGoogle Scholar
  82. 76.
    H. S. Johnston and C. A. Parr, Activation energies from bond energies. I. Hydrogen transfer reactions, J. Amer. Chem. Soc. 85: 2544 (1963).CrossRefGoogle Scholar
  83. 77.
    S. W. Mayer, L. Schieler, and H. S. Johnston, Computation of high-temperature rate constants for bimolecular reactions of combustion products, Eleventh Symp. (Int.) Combustion 837 (1967).Google Scholar
  84. 78.
    M. J. Stern, A. Persky, and F. S. Klein, Force field and tunneling effects in the H-H-Cl reaction system. Determination from kinetic isotope effect measurements, J. Chem. Phys. 58: 5697 (1973).CrossRefGoogle Scholar
  85. 79.
    C. A. Parr, Ph.D. thesis, California Institute of Technology, Pasadena, 1968; C. A. Parr and A. Kuppermann, unpublished.Google Scholar
  86. 80.
    J. T. Muckerman, Applications of classical trajectory techniques to reactive scattering, Theoret. Chem.: Advan. Perspectives 6A: 1 (1981).Google Scholar
  87. 81.
    N. Jonathan, S. Okuda, and D. Timlin, Initial vibrational energy distributions determined by infrared chemiluminescence. III. Experimental results and classical trajectory calculations for the H + F2 system, Mol. Phys. 24: 1143 (1972).CrossRefGoogle Scholar
  88. 82.
    P. J. Kuntz, E. M. Nemeth, J. C. Polanyi, S. D. Rosner, and C. E. Young, Energy distribution among products of exothermic reactions. II. Repulsive, mixed, and attractive energy release, J. Chem. Phys. 44: 1168 (1968).CrossRefGoogle Scholar
  89. 83.
    J. A. Kaye and A. Kuppermann, Chem. Phys. Lett. 77: 573 (1981).CrossRefGoogle Scholar
  90. 84.
    A. M. G. Ding, L. J. Kirsch, D. S. Perry, J. C. Polanyi, and J. L. Schreiber, Effect of changing reagent energy on reaction probability and product energy distribution, Faraday Disc. Chem. Soc. 55: 252 (1973).CrossRefGoogle Scholar
  91. 85.
    J. C. Polanyi and N. Sathyamurthy, Location of energy barriers. VII. Sudden and gradual late-energy barriers, Chem. Phys. 33: 287 (1978).CrossRefGoogle Scholar
  92. 86.
    D. J. Douglas, J. C. Polanyi, and J. J. Sloan, Effect of changing reagent energy on reaction dynamics. VI. Dependence of reaction rates on vibrational energy excitation in substantially endothermic reactions, XH(v′) + Y → X + HY, Chem. Phys. 13: 15 (1976) (1976).CrossRefGoogle Scholar
  93. 87.
    P. J. Kuntz, E. M. Nemeth, J. C. Polanyi, and W. H. Wong, Distribution of reaction products. VI. Hot-atom reactions, T + HR, J. Chem. Phys. 52: 4654 (1970).CrossRefGoogle Scholar
  94. 88.
    T. Valencich, J. Hsieh, J. Kwan, T. Stewart, and T. Lenhardt, Simulation of the effects of translational and vibrational energy on H and D atom reactions with HCl and DCl, Ber. Bunsenges. Phys. Chem. 81: 131 (1977).CrossRefGoogle Scholar
  95. 89.
    B. R. Johnson and N. W. Winter, Classical trajectory study of the effect of vibrational energy on the reaction of molecular hydrogen with atomic oxygen, J. Chem. Phys. 66: 4116 (1967).CrossRefGoogle Scholar
  96. 90.
    M. Baer, An exact quantum mechanical study of the isotopic collinear reactive systems H2 + Cl and D2 + Cl, Mol. Phys. 27: 1429 (1974).CrossRefGoogle Scholar
  97. 91.
    See, e.g., H. Eyring, S. H. Lin, and S. M. Lin, “Basic Chemical Kinetics”, John Wiley & Sons, New York (1980), p. 145.Google Scholar
  98. 92.
    G. S. Hammond, A correlation of reaction rates, J. Amer. Chem. Soc. 77: 334 (1955).CrossRefGoogle Scholar
  99. 93.
    R. A. Eades and D. A. Dixon, personal communication.Google Scholar
  100. 94.
    T. A. Halgren and W. N. Lipscomb, Self-consistent-field wave-functions for complex molecules. The approximation of partial retention of diatomic differential overlap, J. Chem. Phys. 58: 1569 (1973).CrossRefGoogle Scholar
  101. 95.
    See, e.g., L. Melander and W. H. Saunders, Jr., “Reaction Rates of Isotopic Molecules”, John Wiley & Sons, New York (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Bruce C. Garrett
    • 1
    • 2
  • Donald G. Truhlar
    • 1
  • Roger S. Grev
    • 1
  1. 1.Department of ChemistryUniversity of MinnesotaMinneapolisUSA
  2. 2.Battelle Columbus LaboratoriesColumbusUSA

Personalised recommendations