Potential Energy Surface and Cross Sections for the H(D) + H2(D2, HD) Ion-Molecule Reactions

  • H. H. Michels
  • J. F. Paulson


Recent advances in computation techniques for inelastic and reactive scattering have focused attention on the development of accurate Ab initio potential energy surfaces.1 Such surfaces, or corresponding interaction potentials between reactants, are fundamental for quantitative predictions of reaction cross sections using either purely quantum or semiclassical scattering formalisms.


Potential Energy Surface Reaction Cross Section Collision Chamber Singlet Potential Energy Surface Valence Bond Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. F. Schaefer, Interaction potentials I: Atom-molecule potentials, in: “Atom-Molecule Collision Theory: A Guide for the Experimentalist”, R. B. Bernstein, ed., Plenum, New York (1979), p. 45.CrossRefGoogle Scholar
  2. D. G. Truhlar and R. E. Wyatt, History of H3 kinetics, Annu. Rev. Phys. Chem. 27: 1 (1976).CrossRefGoogle Scholar
  3. 2.
    B. Liu, Ab initio potential energy surface for linear H3, J. Chem. Phys. 58: 1925 (1973).CrossRefGoogle Scholar
  4. 3.
    P. Siegbahn and B. Liu, An accurate three-dimensional potential energy surface for H3, J. Chem. Phys. 68: 2457 (1978).CrossRefGoogle Scholar
  5. 4.
    G. C. Schatz and A. Kuppermann, Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems. II. Accurate cross sections for H + H2, J. Chem. Phys. 65: 4668 (1976).CrossRefGoogle Scholar
  6. 5.
    W. A. Lester, Jr., Interaction potential between Li+ and H2. I. Region appropriate for rotational excitation, J. Chem. Phys. 53: 1511 (1970).CrossRefGoogle Scholar
  7. W. A. Lester, Interaction potential between Li+ and H2. II. Region appropriate for vibrational excitation, J. Chem. Phys. 54: 3171 (1971).CrossRefGoogle Scholar
  8. W. A. Lester, Interaction potential between Li+ and H2. II. Region appropriate for vibrational excitation, J. Chem. Phys. 57: 3028(E) (1971).Google Scholar
  9. 6.
    W. Kutzelnigg, V. Staemmler, and K. Hoheisel, Computed potential hypersurface (including electron correlation) of the system Li+/H2, Chem. Phys. 1: 27 (1973).CrossRefGoogle Scholar
  10. 7.
    J. Schaefer and W. A. Lester, Jr., Theoretical study of inelastic scattering of H2 by Li+ on SCF and CI potential energy surfaces, J. Chem. Phys. 62: 1913 (1975).CrossRefGoogle Scholar
  11. 8.
    J. F. Paulson, Reaction of H and D with D2, H2 and HD, Paper V2, 24th Annual Gaseous Electronics Conference, University of Florida, 1971.Google Scholar
  12. 9.
    J. F. Paulson, Negative-ion-neutral reactions in N2O, J. Chem. Phys. 52: 959 (1970).CrossRefGoogle Scholar
  13. 10.
    J. F. Paulson, F. Dale, and S. A. Studniarz, Study of ion-neutral reactions with a time-of-flight double mass spectrometer, Int. J. Mass Spectrom. Ion Phys. 5: 113 (1970).CrossRefGoogle Scholar
  14. 11.
    D. Stevenson and J. O. Hirschfelder, The structure of H3, \(H_{3}^{+}\), and of \(H_{3}^{-}\). IV, J. Chem. Phys. 5: 933 (1937).CrossRefGoogle Scholar
  15. 12.
    A. Macías, Configuration-interaction study of the \(H_{3}^{-}\) system. I. 1s orbitals, J. Chem. Phys. 48: 3464 (1968).CrossRefGoogle Scholar
  16. 13.
    A. Macías, Configuration-interaction study of the \(H_{3}^{-}\) system. II. Expanded basis, J. Chem. Phys. 49: 2198 (1968).CrossRefGoogle Scholar
  17. 14.
    C. D. Ritchie and H. F. King, Theoretical studies of proton-transfer reactions. I. Reactions of hydride ion with hydrogen fluoride and hydrogen molecules, J. Amer. Chem. Soc. 90: 825 (1968).CrossRefGoogle Scholar
  18. 15.
    R. Garcia G., A. R. Rossi, and A. Russek, Dissociating states of the \(H_{3}^{-}\) system, J. Chem. Phys. 70: 5463 (1979).CrossRefGoogle Scholar
  19. 16.
    I. Shavitt, R. M. Stevens, F. L. Minn, and M. Karplus, Potential-energy surface for H3, J. Chem. Phys. 48: 2700 (1968).CrossRefGoogle Scholar
  20. 17.
    F. E. Harris and H. H. Michels, The evaluation of molecular integrals for Slater-type orbitals, Advan. Chem. Phys. 13: 205 (1967).CrossRefGoogle Scholar
  21. 18.
    F. E. Harris and H. H. Michels, Open-shell valence configuration-interaction studies of diatomic and polyatomic molecules, Int. J. Quantum Chem. Symp. 1: 329 (1967).CrossRefGoogle Scholar
  22. 19.
    A. C. Wahl, P. S. Bertoncini, G. Das, and T. L. Gilbert, Recent progress beyond the Hartree-Fock method for diatomic molecules: The method of optimized valence configurations, Int. J. Quantum Chem. Symp. 1: 123 (1967).CrossRefGoogle Scholar
  23. 20.
    W. A. Goddard III, Concerning the stability of the negative ions H and Li, Phys. Rev. 172: 7 (1968).CrossRefGoogle Scholar
  24. 21.
    J. F. Paulson and P. J. Gale, The reaction of atomic oxygen (-) with water, Advan. Mass. Spectrom. 7A: 263 (1978).Google Scholar
  25. 22.
    E. E. Muschlitz, T. L. Bailey, and J. H. Simmons, Elastic and inelastic scattering of low-velocity H ions in hydrogen, J. Chem. Phys. 24: 1202 (1956).CrossRefGoogle Scholar
  26. 23.
    E. A. Mason and J. T. Vanderslice, Interactions of H ions and H atoms with Ne, Ar, and H2, J. Chem. Phys. 28: 1070 (1958).CrossRefGoogle Scholar
  27. 24.
    I. Amdur and J. E. Jordan, Elastic scattering of high-energy beams: Repulsive forces, Advan. Chem. Phys. 10: 29 (1966).CrossRefGoogle Scholar
  28. 25.
    S. Glasstone, K. J. Laidler, and H. Eyring, “The Theory of Rate Processes”, McGraw-Hill, New York (1941).Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • H. H. Michels
    • 1
  • J. F. Paulson
    • 2
  1. 1.United Technologies Research CenterEast HartfordUSA
  2. 2.Air Force Geophysics LaboratoryHanscom FieldUSA

Personalised recommendations