Skip to main content

Potential Energy Surfaces for the H + HX (X = F, C1, Br, I) Abstraction and Exchange Reaction Channels Calculated by the Modified DIM Method

  • Chapter
Potential Energy Surfaces and Dynamics Calculations

Abstract

The potential energy surfaces of triatomic hydrides XH2, where X is a halogen atom, are of considerable interest in theoretical investigations of the abstraction and exchange reactions1–4

$$H+HX\rightarrow H_{2}+X$$
((1))
$$H{}'+HX\rightarrow H{}'X+H$$
((2))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. A. Parr and D. G. Truhlar, Potential energy surfaces for atom transfer reactions involving hydrogens and halogens, J. Phys. Chem. 75: 1844 (1971).

    Article  Google Scholar 

  2. R. N. Porter, L. B. Sims, D. L. Thompson, and L. M. Raff, Classical dynamical investigations of reaction mechanism in three-body hydrogen-halogen systems, J. Chem. Phys, 58: 2855 (1973).

    Article  Google Scholar 

  3. N. Agmon and R. D. Levine, Energy, entropy and the reaction coordinate: Thermodynamic-like relations in chemical kinetics, Chem. Phys. Lett. 52: 197 (1977).

    Article  CAS  Google Scholar 

  4. P. Botschwina and W. Meyer, A PNO-CEPA calculation of the barrier height for the collinear atom exchange reaction H + BrH → HBr + H, J. Chem. Phys. 67: 2390 (1977).

    Article  CAS  Google Scholar 

  5. C. F. Bender, P. K. Pearson, S. V. O’Neil, and H. F. Schaefer III, Potential energy surface including electron correlation for the chemical F + H2 → FH + H. I. Preliminary surface, J. Chem. Phys. 56: 4626 (1972).

    Article  CAS  Google Scholar 

  6. C. F. Bender, B. J. Garrison, and H. F. Schaefer III, A classical test of semiempirical FH2 potential energy surfaces: The barrier height for H + HF → HF + H, J. Chem. Phys. 62: 1188 (1975).

    Article  CAS  Google Scholar 

  7. P. Botschwina and W. Meyer, PNO-CEPA calculation of collinear potential energy barriers for thermoneutral exchange reactions, Chem. Phys. 20: 43 (1977).

    Article  CAS  Google Scholar 

  8. P. Botschwina and W. Meyer, A PNO-CEPA calculation of the barrier height for the collinear atom exchange reaction Cl + HCl → ClH + Cl, Chem. Phys. Lett. 44: 449 (1976).

    Article  CAS  Google Scholar 

  9. T. H. Dunning, Jr., The barrier for abstraction and exchange in H + HCl, J. Chem. Phys. 66: 2752 (1977).

    Article  CAS  Google Scholar 

  10. W. R. Wadt and N. W. Winter, Accurate characterization of the transition state geometry for the H + HF → H + HF reaction, J. Chem. Phys. 67: 3068 (1977).

    Article  CAS  Google Scholar 

  11. F. London, Quantenmechanische Deuting des Vorgangs der Aktivierung, Z. Elektrochem. 35: 552 (1929).

    CAS  Google Scholar 

  12. S. Sato, A new method of drawing the potential energy surface, Bull. Chem. Soc. Jap. 28: 450 (1955).

    Article  CAS  Google Scholar 

  13. A. A. Westenberg and N. de Haas, Atom-molecule kinetics using ESR detection. IV. Results for Cl + H2 ⇄ HCl + H in both directions, J. Chem. Phys. 48: 4405 (1968).

    Article  CAS  Google Scholar 

  14. I. W. Smith and P. W. Wood, Vibrational relaxation in atom-exchange reactions, Mol. Phys. 25: 441 (1973).

    Article  Google Scholar 

  15. R. L. Wilkins, Vibrational relaxation of HCl by H and Cl atoms, J. Chem. Phys. 63: 534 (1975).

    Article  CAS  Google Scholar 

  16. R. L. Wilkins, Reaction rates and energy distributions among reaction products for the H + Cl2 and Cl + H2 reactions, J. Chem. Phys. 63: 2963 (1975).

    Article  CAS  Google Scholar 

  17. F. O. Ellison, A method of diatomics in molecules. I. General theory and application to H2O, J. Amer. Chem. Soc. 85: 3540 (1963).

    Article  CAS  Google Scholar 

  18. P. J. Kuntz, Use of the method of diatomics-in-molecules in fitting Ab initio potential energy surfaces, Chem. Phys. Lett. 16: 581 (1972).

    Article  CAS  Google Scholar 

  19. P. J. Kuntz and A. C. Roach, Ion-molecule reactions of the rare gases with hydrogen, J. Chem. Soc. Faraday Trans. II 68: 259 (1972).

    Article  CAS  Google Scholar 

  20. J. C. Tully, Diatomics-in-molecules potential energy surfaces. I. First-row triatomic hydrides, J. Chem. Phys. 58: 1396 (1973).

    Article  CAS  Google Scholar 

  21. D. L. Miller and R. E. Wyatt, Comparison of diatomics-in-molecules and simple valence-bond potential surfaces for FH2, Chem. Phys. Lett. 38: 410 (1976).

    Article  CAS  Google Scholar 

  22. C. W. Eaker and C. A. Parr, Optimization of diatomic state mixing in diatomics-in-molecules theory, J. Chem. Phys. 64: 1322 (1976).

    Article  CAS  Google Scholar 

  23. M. B. Faist and J. T. Muckerman, On the valence bond diatomics-in-molecules method. I. A projection operator reformulation, J. Chem. Phys. 71: 225 (1979).

    Article  CAS  Google Scholar 

  24. M. B. Faist and J. T. Muckerman, On the valence bond diatomics-in-molecules method. II. Application to the valence state of FH2, J. Chem. Phys. 71: 233 (1979).

    Article  CAS  Google Scholar 

  25. J. T. Muckerman, Monte Carlo calculations of energy partitioning and isotope effects in reactions of fluorine atoms with H2, HD, D2, J. Chem. Phys. 54: 1155 (1971).

    Article  CAS  Google Scholar 

  26. J. T. Muckerman, Classical dynamics of the reaction of fluorine atoms with hydrogen molecules, J. Chem. Phys. 56: 2997 (1972).

    Article  CAS  Google Scholar 

  27. A. Persky and M. Baer, Exact quantum mechanical study of kinetic isotope effects in the collinear reaction Cl + H2 → HCl + H, J. Chem. Phys. 60: 133 (1974).

    Article  CAS  Google Scholar 

  28. D. L. Thompson, H. H. Suzukawa, Jr., and L. M. Raff, A paradox: The thermal rate coefficient for the H + DCl → HCl + D exchange reaction, J. Chem. Phys, 62: 4727 (1975).

    Article  CAS  Google Scholar 

  29. R. L. Jaffe, K. Morokuma, and T. F. George, Ab initio and semi-empirical study of multiple surfaces and their analytical continuation for collinear F + H2 → FH + H, J. Chem. Phys. 63: 3417 (1975).

    Article  CAS  Google Scholar 

  30. I. Last and M. Baer, Semiempirical potential energy surfaces for the reactions H + HCl → H2 + Cl and H + HCl + HCl + H, Chem. Phys. Lett. 73: 514 (1980).

    Article  CAS  Google Scholar 

  31. I. Last and M. Baer, Semiempirical three-dimensional potential energy surfaces suitable for both reaction channels of the XH2 system (X = F, Cl), J. Chem. Phys., in press.

    Google Scholar 

  32. R. E. Weston, Jr., A survey of reactions involving H′, H″, and Cl atoms, J. Phys. Chem. 83: 61 (1979).

    Article  CAS  Google Scholar 

  33. I. Last, Limitations of the diatomics-in-molecules method, Chem. Phys., in press.

    Google Scholar 

  34. P. J. Kuntz, Interaction potentials II: Semiempirical atom-molecule potentials for collision theory, in: “Atom-Molecule Collision Theory: A Guide for the Experimentalist”, R. B. Bernstein, ed., Plenum, New York (1979), p. 79.

    Chapter  Google Scholar 

  35. J. C. Tully, Diatomics-in-molecules, in: “Semiempirical Methods of Electronic Structure Calculations, Part A: Techniques”, G. A. Segal, ed., Plenum, New York (1977), p. 173.

    Chapter  Google Scholar 

  36. R. N. Porter and M. Karplus, Potential energy surface for H3, J. Chem. Phys. 40: 1105 (1964).

    Article  CAS  Google Scholar 

  37. I. T. Lyast, The antisymmetrized product of weak nonorthogonal geminals, Int. J. Quantum Chem. 13: 83 (1978).

    Article  CAS  Google Scholar 

  38. R. S. Mulliken, Quelques aspects de la theorie des orbitales moleculaires, J. Chim. Phys. 46: 497 (1949).

    CAS  Google Scholar 

  39. T. H. Dunning, Jr., The low-lying states of hydrogen fluoride: Potential energy curves for the X1+, 3+, 3∏, and 1∏ states, J. Chem. Phys. 65: 3854 (1976).

    Article  CAS  Google Scholar 

  40. P. A. Whitlock and J. T. Muckerman, Comparison of quasiclassical trajectory and classical S-matrix treatments of collinear collisions of F and D2, J. Chem. Phys, 61: 4618 (1974).

    Article  CAS  Google Scholar 

  41. J. F. Bott, A shock tube study of the reaction of H atom with DF, J. Chem, Phys. 65: 1976 (1976).

    CAS  Google Scholar 

  42. See, however, F. E. Bartoszek, D. M. Manos, and J. C. Polanyi, Effect of changing reagent energy. X. Vibrational threshold energies for alternative reaction paths HF(v) + D → F + HD and → H + DF, J. Chem. Phys. 69: 933 (1978).

    Article  CAS  Google Scholar 

  43. A. Persky, Quasiclassical trajectory studies of the chlorine-hydrogen system, J. Chem. Phys. 66: 2932 (1977).

    Article  CAS  Google Scholar 

  44. H. Endo and G. P. Glass, Reactions of atomic hydrogen and deuterium with HBr and DBr, J. Phys. Chem. 80: 1519 (1976).

    Article  CAS  Google Scholar 

  45. H. Endo and G. P. Glass, The exchange reaction D + HCl → DCl + H, Chem. Phys. Lett. 44: 180 (1976).

    Article  CAS  Google Scholar 

  46. G. O. Wood, Isotope exchange vs. abstraction for H + DCl, J. Chem. Phys. 56: 1723 (1972).

    Article  CAS  Google Scholar 

  47. F. S. Klein and I. Veltman, Branching ratios for the H + DCl and D + HCl reaction systems, J. Chem. Soc. Faraday Trans. II 74: 17 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baer, M., Last (Lyast), I. (1981). Potential Energy Surfaces for the H + HX (X = F, C1, Br, I) Abstraction and Exchange Reaction Channels Calculated by the Modified DIM Method. In: Truhlar, D.G. (eds) Potential Energy Surfaces and Dynamics Calculations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1735-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1735-8_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1737-2

  • Online ISBN: 978-1-4757-1735-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics