Skip to main content

Quantum Dynamics of the Three-Dimensional F + H2 Reaction: Wavefunction Density Analysis

  • Chapter
Book cover Potential Energy Surfaces and Dynamics Calculations

Abstract

During the past decade, many new results have been obtained on the dynamics of elementary chemical reactions. One of the most intensively studied reactions continues to be the process F + H2(v,j) → FH(v′,j′) + H. Many experimental and theoretical results on this reaction have been discussed in recent reviews.1,2 On the experimental side, the F + H2 reaction with isotopic variants has been studied under chemical laser conditions,3-5 through IR chemiluminescence,6,7 and in crossed molecular beam machines.8,9 Recent crossed beam studies by Sparks et al. 9 are particularly relevant to the present study and will be discussed in more detail later in this section. On the theoretical side, very extensive quasiclassical trajectory studies on a number of potential surfaces have provided many new dynamical results for the three-dimensional reactions.1,2,10 The first quantum collinear studies11-13 of this reaction showed a dramatic difference from the low-energy quasiclassical results12 for the collinear reaction. At these low energies, there is a sharp resonance in the quantum mechanical v=0→v′=2 reaction probability curve, followed by a slow growth In the 0 → 3 reaction probability. The 0 → 2 resonance is the most striking feature of the low-energy collinear reaction. Since these first quantum collinear studies, many other quantum studies of the collinear reaction have appeared.14-16 Connor has recently presented a comprehensive review of these results.16 In attempting to understand the origin of the 0 → 2 collinear resonnance, Latham et al. 15 displayed plots of the scattering wavefunction and flux in the interaction region. In addition, Hayes and Walker17 have recently found that removal of the 0.05 eV entrance-channel barrier destroys this sharp resonance feature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. B. Anderson, The reaction F + H2 → HF + H, Advan. Chem. Phys. 41: 229 (1980).

    Article  CAS  Google Scholar 

  2. J. T. Muckerman, Applications of classical trajectory techniques to reactive scattering, Theor. Chem.: Advan. Perspectives 6A: 1 (1981).

    Google Scholar 

  3. J. H. Parker and G. C. Pimentel, Vibrational energy distribution through chemical laser studies I. Fluorine atoms plus hydrogen or methane, J. Chem. Phys. 51: 91 (1969).

    Article  CAS  Google Scholar 

  4. R. D. Coombe and G. C. Pimentel, Effects of rotation on the vibrational energy distributions in the reaction F + H2, J. Chem. Phys. 59: 251 (1973).

    Article  CAS  Google Scholar 

  5. M. Berry, F + H2, D2, HD reactions: Chemical laser determination of the product vibrational state populations and the F + HD intramolecular kinetic isotope effect, J. Chem. Phys. 59: 6229 (1973).

    Article  CAS  Google Scholar 

  6. J. C. Polanyi and K, B. Woodall, Energy distribution among reaction products. VI. F + H2, D2, J. Chem. Phys. 57: 1574 (1972).

    Article  Google Scholar 

  7. D. S. Perry and J. C. Polanyi, Energy distribution among reaction products. IX. F + H2, HD, D2, J. Chem. Phys, 12: 419 (1976).

    CAS  Google Scholar 

  8. T. P. Schafer, P. E. Siska, J. M. Parson, F. P. Tully, Y. C. Wong, and Y. T. Lee, Cross molecular beam study of F + D2, J. Chem. Phys. 53: 3385 (1970).

    Article  CAS  Google Scholar 

  9. R. K. Sparks, C. C. Hayden, K. Shobatake, D. M. Neumark, and Y. T. Lee, Molecular beam studies of reaction dynamics of F + H2, D2, in: “Horizons of Quantum Chemistry”, K. Fukui and B. Pullman, eds., Reidel, Dordrecht (1980), p. 91.

    Chapter  Google Scholar 

  10. J. C. Polanyi and J. L. Schreiber, The reaction F + H2 → FH + H. A case study in reaction dynamics, Faraday Disc. Chem. Soc. 62: 267 (1977).

    Article  CAS  Google Scholar 

  11. S. F. Wu, B. R. Johnson, and R. D. Levine, Quantum mechanical computational studies of chemical reactions: III. Collinear A + BC reaction with some model potential energy surfaces, Mol. Phys. 25: 839 (1973).

    Article  CAS  Google Scholar 

  12. G. C. Schatz, J. M. Bowman, and A. Kuppermann, Exact quantum, quasiclassical, and semiclassical reaction probabilities for the collinear F + H2 → FH + H reaction, J. Chem. Phys. 63: 674 (1975).

    Article  CAS  Google Scholar 

  13. J. N. L. Connor, W. Jakubetz, and J. Manz, Exact quantum transition probabilities by the state path sum method: Collinear F + H2 reaction, Mol. Phys. 29: 347 (1975).

    Article  CAS  Google Scholar 

  14. C. Zuhrt, T. Kamal, and L. Zülicke, Quantum mechanical investigations of the collinear collisions F + H2 and F + D2 using the wavepacket approach, Chem. Phys. Lett. 36: 396 (1975).

    Article  CAS  Google Scholar 

  15. S. L. Latham, J. F. McNutt, R. E. Wyatt, and M. J. Redmon, Quantum dynamics of the F + H2 reaction: Resonance models and energy and flux distributions in the transition state, J. Chem. Phys. 69: 3746 (1978).

    Article  CAS  Google Scholar 

  16. J. N. L. Connor, Reactive molecular collision calculations, Comput. Phys. Commun. 17: 117 (1979).

    Article  CAS  Google Scholar 

  17. E. F. Hayes and R. B. Walker, private communication.

    Google Scholar 

  18. A. Kafri, Y. Shimoni, R. D. Levine, and S. Alexander, The Born approximation as a simple diagnostic method for direct molecular collisions with applications to the Cl + HI and F + H2 reactions, Chem. Phys. 13: 323 (1976).

    Article  CAS  Google Scholar 

  19. Y. Shan, B. H. Choi, R. T. Poe, and K. T. Tang, Three-dimensional quantum mechanical study of the F + H2 reactive scattering, Chem. Phys. Lett. 57: 379 (1978).

    Article  CAS  Google Scholar 

  20. M. Baer, V. Khare, and D. Kouri, private communication.

    Google Scholar 

  21. R. E. Wyatt, Quantum mechanics of neutral atom-diatomic molecular reactions, in: “State-to-State Chemistry”, P. R. Brooks and E. F. Hayes, eds., American Chemical Society, Washington (1977), p. 185.

    Chapter  Google Scholar 

  22. M. J. Redmon and R. E. Wyatt, Three-dimensional quantum mechanical studies of the H + H2 and F + H2 reactions, Int. J. Quantum Chem. Symp. 9: 403 (1975).

    Article  CAS  Google Scholar 

  23. M. J. Redmon and R. E. Wyatt, Computational methods for reactive scattering, Int. J. Quantum Chem. Symp. 11: 343 (1977).

    CAS  Google Scholar 

  24. M. J. Redmon, Recent results from three-dimensional quantum reactive scattering theory, Int. J. Quantum Chem. Symp. 13: 559 (1979).

    CAS  Google Scholar 

  25. M. J. Redmon and R. E. Wyatt, Quantum resonance structure in the three-dimensional F + H2 reaction, Chem. Phys. Lett. 63: 209 (1979).

    Article  CAS  Google Scholar 

  26. R. E. Wyatt, Quantum mechanical study of chemical reaction dynamics, in: “Horizons of Quantum Chemistry”, K. Fukui and B. Pullman, eds., Reidel, Dordrecht (1980), p. 63.

    Chapter  Google Scholar 

  27. R. E. Wyatt, to be published.

    Google Scholar 

  28. R. A. Marcus, Analytical mechanics of chemical reactions. III. Natural collision coordinates, J. Chem. Phys. 49: 2610 (1968).

    Article  CAS  Google Scholar 

  29. J. C. Light and R. B. Walker, Hermitian quantum equations for scattering in reaction coordinates, J. Chem. Phys. 65: 1598 (1976).

    Article  CAS  Google Scholar 

  30. J. T. Muckerman, Classical dynamics of the reaction of fluorine atoms with hydorgen molecules. II. Dependence on the potential energy surface, J. Chem. Phys. 56: 2997 (1972).

    Article  CAS  Google Scholar 

  31. J. C. Light and R. B. Walker, An R-matrix approach to the solution of coupled equations for atom-molecule reactive scattering, J. Chem. Phys. 65: 4272 (1976).

    Article  CAS  Google Scholar 

  32. P. B. Middleton and R. E. Wyatt, Quantum mechanical study of a reaction path bifurcation model, Chem. Phys. Lett. 21: 57 (1973).

    Article  CAS  Google Scholar 

  33. S. H. Harms, A. B. Elkowitz, and R. E. Wyatt, Asymmetric top states for chemical reactions, Mol. Phys. 31: 177 (1976).

    Article  CAS  Google Scholar 

  34. R. E. Wyatt, Direct mode reactions: Methodology for accurate quantal calculations, in “Atom-Molecule Collision Theory: A Guide for the Experimentalist”, R. B. Bernstein, ed., Plenum, New York (1979), p. 567.

    Chapter  Google Scholar 

  35. J. W. Duff and D. G. Truhlar, Effect of curvature on the reaction path on dynamic effects in endothermic reactions and product energies in exothermic reactions, J. Chem. Phys. 62: 2477 (1975).

    Article  CAS  Google Scholar 

  36. D. G. Truhlar and D. A. Dixon, Direct-mode chemical reactions: Classical theories, in “Atom-Molecule Collision Theory: A Guide for the Experimentalist”, R. B. Bernstein, ed., Plenum, New York (1979), p. 595, and references therein.

    Chapter  Google Scholar 

  37. D. G. Truhlar, B. C. Garrett, and R. S. Grev, unpublished; D. G. Truhlar, personal communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

McNutt, J.F., Wyatt, R.E. (1981). Quantum Dynamics of the Three-Dimensional F + H2 Reaction: Wavefunction Density Analysis. In: Truhlar, D.G. (eds) Potential Energy Surfaces and Dynamics Calculations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1735-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1735-8_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1737-2

  • Online ISBN: 978-1-4757-1735-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics