Skip to main content

Effect of Potential Energy Surface Properties on Unimolecular Dynamics for a Model Alkyl Radical Dissociation Reaction: H-C-C → H + C=C

  • Chapter
Potential Energy Surfaces and Dynamics Calculations

Abstract

At the present very little is known about the effect of various potential energy surface properties on unimoleeular reaction dynamics. This is in sharp contrast to the current state of affairs for direct triatomic A + BC → AB + C absorption reactions.1-4 Detailed microscopic dynamical information such as reactive cross sections, energy partitioning In the reaction products, and velocity and angular momenta scattering angles has been gleaned for these reactions from molecular beam, infrared chemiluminescence, and laser fluorescence experiments. This data is of sufficient detail that it is possible to use classical trajectory calculations to resolve and characterize many important potential energy surface features. Initial attempts have also been made to elucidate important potential energy surface properties for complex polyatomic bimolecular reactions.5–9

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. C. Polanyi, Some concepts in reaction dynamics, Acc. Chem. Res. 5: 161 (1971).

    Article  Google Scholar 

  2. D. L. Bunker, Classical trajectory methods, Methods Comput. Phys. 10: 287 (1971).

    CAS  Google Scholar 

  3. J. C. Polanyi and J. L. Schreiber, The dynamics of bimolecular reactions, in: “Physical Chemistry: An Advanced Treatise”, Vol. VI-A, “Kinetics of Gas Reactions”, W. Jost, ed., Academic, New York (1974), p. 383.

    Google Scholar 

  4. J. W. Duff and D. G. Truhlar, Effect of curvature of the reaction path on dynamic effects in endothermic chemical reactions and product energies in exothermic reaction, J. Chem. Phys. 62: 2477 (1975).

    Article  CAS  Google Scholar 

  5. D. L. Bunker and E. A. Goring-Simpson, Alkali-methyl iodide reactions, Faraday Disc. Chem. Soc. 55: 93 (1973).

    Article  CAS  Google Scholar 

  6. L. M. Raff, Theoretical investigations of the reaction dynamics of polyatomic systems: Chemistry of the hot atom (T* + CH4) and (T* + CD4) systems, J. Chem. Phys. 60: 2220 (1974).

    Article  CAS  Google Scholar 

  7. D. L. Bunker, Simple kinetic models from Arrhenius to the computer, Acc. Chem. Res. 7: 195 (1974).

    Article  CAS  Google Scholar 

  8. T. Valencich and D. L. Bunker, Trajectory studies of hot atom reactions. II. An unrestricted potential for CH5, J. Chem. Phys. 61: 21 (1974).

    Article  CAS  Google Scholar 

  9. S. Chapman and D. L. Bunker, An exploratory study of reactant vibrational effects in CH3 + H2 and its isotopic variants, J. Chem. Phys. 62: 2890 (1975).

    Article  CAS  Google Scholar 

  10. I. Oref and B. S. Rabinovitch, Do highly excited reactive polyatomic molecules behave ergodically, Acc. Chem. Res. 12: 166 (1979).

    Article  CAS  Google Scholar 

  11. J. P. Robinson and K. A. Holbrook, “Unimolecular Reactions”, Wiley Interscience, New York (1972).

    Google Scholar 

  12. W. Forst, “Theory of Unimolecular Reactions”, Academic, New York (1973).

    Google Scholar 

  13. W. L. Hase, Dynamics of unimolecular reactions, in: “Dynamics of Molecular Collisions, Part B”, W. H. Miller, ed., Plenum, New York (1976), p. 121.

    Chapter  Google Scholar 

  14. W. L. Hase, The criterion of minimum state density in unimolecular rate theory. An application to ethane dissociation, J. Chem. Phys. 64: 2442 (1976).

    Article  CAS  Google Scholar 

  15. D. L. Bunker and W. L. Hase, On non-RRKM unimolecular kinetics: Molecules in general, and CH3NC in particular, J. Chem. Phys. 59: 4621 (1973), 69, 4711(E) (1978).

    Article  CAS  Google Scholar 

  16. R. A. Marcus, comment made at the General Discussion on Molecular Beam Scattering, Faraday Disc. Chem. Soc. 55: 379 (1973).

    Google Scholar 

  17. J. D. McDonald and R. A. Marcus, Classical trajectory study of internal energy distributions in unimolecular processes, J. Chem. Phys. 65: 2180 (1976).

    Article  CAS  Google Scholar 

  18. R. V. Reddy and M. J. Berry, A nonstatistical unimolecular chemical reaction: Isomerization of state-selected allyl iso-cyanide, Chem. Phys. Lett. 66: 223 (1979).

    Article  CAS  Google Scholar 

  19. T. F. Deutsch and S. R. J. Brueck, v3 mode absorption behavior of CO2 laser excited SF3, J. Chem. Phys. 70: 2063 (1979).

    Article  CAS  Google Scholar 

  20. J. M. Farrar and Y. T. Lee, The question of energy randomization in the decomposition of chemically activated C2H4F, J. Chem. Phys. 65: 1414 (1976).

    Article  CAS  Google Scholar 

  21. J. H. Lee, J. V. Michael, W. A. Payne, and L. J. Stief, Absolute rate of the reaction of atomic hydrogen with ethylene from 198 to 320 K at high pressure, J. Chem. Phys. 68: 1817 (1978).

    Article  CAS  Google Scholar 

  22. M. G. Moss, M. D. Ensminger, G. M. Stewart, D. Mordaunt, and J. D. McDonald, Infrared chemiluminescence investigation of the reaction of halogen atoms with deuterated ethylene and benzene derivatives, J. Chem. Phys. 73: 1256 (1980).

    Article  CAS  Google Scholar 

  23. R. J. Wolf and W. L. Hase, Trajectory studies of model H-C-C → H + C=C dissociation. I. Random vibrational excitation, J. Chem. Phys. 72: 316 (1980).

    Article  CAS  Google Scholar 

  24. R. J. Wolf and W. L. Hase, Quasiperiodic trajectories for a multidimensional anharmonic classical Hamiltonian excited above the unimolecular threshold, J. Chem. Phys. 73: 3779 (1980).

    Article  CAS  Google Scholar 

  25. R. J. Wolf and W. L. Hase, Importance of angular momentum constraints in the product energy partitioning of model H-C-C → H + C=C dissociation, J. Chem. Phys. 73: 3010 (1980).

    Article  CAS  Google Scholar 

  26. J. V. Michael and G. N. Suess, Application of RRKM theory to the chemical and thermal activation of ethyl radicals, J. Chem. Phys. 58: 2807 (1973).

    Article  Google Scholar 

  27. J. A. Cowfer and J. V. Michael, An investigation of nonequili-brium kinetic isotope effects in chemically activated ethyl radicals, J. Chem. Phys. 62: 3505 (1975).

    Article  Google Scholar 

  28. D. G. Keil, K. P. Lynch, J. A. Cowfer, and J. V. Michael, An investigation of nonequilibrium kinetic isotope effects in chemically activated vinyl radicals, Int. J. Chem. Kinet. 8: 825 (1976).

    Article  CAS  Google Scholar 

  29. J. M. Parson and Y. T. Lee, Crossed molecular beam study of F + C2H4, C2D4, J. Chem. Phys. 56: 4658 (1972).

    Article  CAS  Google Scholar 

  30. J. G. Moehlmann, J. T. Cleaves, J. W. Hudgens, and J. D. McDonald, Infrared chemiluminescence studies of the reaction of fluorine atoms with monosubstituted ethylene compounds, J. Chem. Phys. 60: 4790 (1974).

    Article  CAS  Google Scholar 

  31. J. M. Parson, K. Shobatake, Y. T. Lee, and S. A. Rice, Unimolecular decomposition of the long-lived complex formed in the reaction F + C4H8, J. Chem. Phys. 59: 1402 (1973).

    Article  CAS  Google Scholar 

  32. K. Shobatake, Y. T. Lee, and S. A. Rice, Crossed molecular beams study of the reaction F + C2H2Cl2 → Cl + C2H2C1F, J. Chem. Phys. 59: 6104 (1973).

    Article  CAS  Google Scholar 

  33. R. J. Buss, M. J. Coggiola, and Y. T. Lee, Molecular beam studies of unimolecular reactions: C1,F + C2H3Br, Faraday Disc. Chem. Soc. 67: 172 (1979).

    Article  Google Scholar 

  34. J. F. Durana and J. D. McDonald, Infrared chemiluminescence studies of chlorine substitution reactions with brominated unsaturated hydrocarbons, J. Chem. Phys. 64: 2518 (1976).

    Article  CAS  Google Scholar 

  35. J. G. Moehlmann and J. D. McDonald, Infrared chemiluminescence investigation of fluorine atom substituted reactions, J. Chem. Phys. 62: 3052 (1975).

    Article  CAS  Google Scholar 

  36. D. L. Bunker, K. R. Wright, W. L. Hase, and F. A. Houle, Exit-channel coupling effects in the unimolecular decomposition of triatomics, J. Phys. Chem. 83: 933 (1979).

    Article  CAS  Google Scholar 

  37. W. L. Hase, R. J. Wolf, and C. S. Sloane, Trajectory studies of the molecular dynamics of ethyl radical decomposition, J. Chem. Phys. 71: 2911 (1979).

    Article  CAS  Google Scholar 

  38. D. W. Placzek, B. S. Rabinovitch, and F. H. Dorer, Intramolecular energy relaxation. Butyl radical decomposition at high pressure, J. Chem. Phys. 44: 279 (1966).

    Article  CAS  Google Scholar 

  39. I. Oref, D. Schuetzle, and B. S. Rabinovitch, Unimolecular decomposition and intramolecular energy relaxation in the suprahigh-pressure region, J. Chem. Phys. 54: 575 (1971).

    Article  CAS  Google Scholar 

  40. D. C. Tardy and B. S. Rabinovitch, Intramolecular vibrational energy transfer in thermal unimolecular systems, Chem. Rev. 77: 369 (1977).

    Article  CAS  Google Scholar 

  41. C. S. Sloane and W. L. Hase, Ethyl radical potential energy surface, Faraday Disc. Chem. Soc. 62: 210 (1977).

    Article  CAS  Google Scholar 

  42. W. L. Hase, G. Mrowka, R. J. Brudzynski, and C. S. Sloane, An analytic function describing the H + C2H4 ⇄ C2H5 potential energy surface, J. Chem. Phys. 69: 3548 (1978).

    Article  CAS  Google Scholar 

  43. D. G. Truhlar and J. T. Muckerman, Reactive scattering cross sections III: Quasiclassical and semiclassical methods, in: “Atom-Molecule Collision Theory: A Guide for the Experimentalist”, R. B. Bernstein, ed., Plenum, New York (1979), p. 505.

    Chapter  Google Scholar 

  44. R. N. Porter, L. M. Raff, and W. H. Miller, Quasiclassical selection of initial coordinates and momenta for a rotating Morse oscillator, J. Chem. Phys. 63: 2214 (1975).

    Article  CAS  Google Scholar 

  45. D. L. Bunker, Monte Carlo calculations. IV. Further studies of unimolecular dissociation, J. Chem. Phys. 40: 1946 (1964).

    Article  CAS  Google Scholar 

  46. E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, “Molecular Vibrations”, McGraw-Hill, New York (1955).

    Google Scholar 

  47. D. W. Oxtoby and S. A. Rice, Nonlinear resonance and stochasticity in intramolecular energy exchange, J. Chem. Phys. 65: 1676 (1976).

    Article  CAS  Google Scholar 

  48. P. Brumer and J. W. Duff, A variational equations approach to the onset of statistical intramolecular energy transfer, J. Chem. Phys. 65: 3566 (1976).

    Article  CAS  Google Scholar 

  49. K. D. Hänsel, The stability of molecular motion and intramolecular energy transfer, J. Chem. Phys. 70: 1830 (1979).

    Article  Google Scholar 

  50. C. Cerjan and W. P. Reinhardt, Critical point analysis of instabilities in Hamiltonian systems: Classical mechanics of stochastic intramolecular energy transfer, J. Chem. Phys. 71: 1819 (1979).

    Article  CAS  Google Scholar 

  51. D. L. Bunker and M. Pattengill, Monte Carlo calculations. VI. A re-evaluation of the RRKM theory of unimolecular reaction rates, J. Chem. Phys. 48: 772 (1968).

    Article  CAS  Google Scholar 

  52. J. Ford, The transition from analytic dynamics to statistical mechanics, Advan. Chem. Phys. 24: 155 (1973).

    Article  CAS  Google Scholar 

  53. I. C. Percival, Semiclassical theory of bound states, Advan. Chem. Phys. 36: 1 (1977).

    Article  CAS  Google Scholar 

  54. M. V. Berry, Regular and irregular motion, in: “Topics in Nonlinear Dynamics”, American Institute of Physics Proceedings No. 46, S. Jorna, ed., American Institute of Physics, New York (1978), p. 16.

    Google Scholar 

  55. J. L. Rookstool and C. A. Parr, Classical stretching dynamics in methylene, J. Chem. Phys. 83: 963 (1979).

    Article  CAS  Google Scholar 

  56. D. W. Noid, M. L. Koszykowski, and R. A. Marcus, Semiclassical calculation of eigenvalues for a three-dimensional system, J. Chem, Phys. 73: 391 (1980).

    CAS  Google Scholar 

  57. S. Kato and K. Morokuma, Potential energy characteristics and energy partitioning in chemical reactions: Ab initio MO study of H2CCH2F → H2CCHF + H reaction, J. Chem. Phys. 72: 206 (1980).

    Article  CAS  Google Scholar 

  58. R. A. Marcus, On the theory of energy distributions of products of molecular beam reactions involving transient complexes, J. Chem. Phys. 62: 1372 (1975).

    Article  CAS  Google Scholar 

  59. G. Worry and R. A. Marcus, On the theory of translational energy distributions of product molecular beam reactions involving transient complexes. II, J. Chem. Phys. 67: 1636 (1977).

    Article  CAS  Google Scholar 

  60. R. J. Wolf, Theoretical studies of the formation and decomposition of vibrationally excited model alkyl radicals, Ph.D. thesis, Wayne State University, Detroit, 1980.

    Google Scholar 

  61. G. F. Adams, G. D. Bent, G. D. Purvis, and R. J. Bartlett, The electronic structure of the formyl radical HCO, J. Chem. Phys, 71: 3697 (1979).

    Article  CAS  Google Scholar 

  62. T. H. Dunning, Jr., Theoretical characterization of the potential energy surface of the ground state of the HCO system, J. Chem. Phys. 73: 2304 (1980).

    Article  CAS  Google Scholar 

  63. W. D. Noid, M. L. Koszyknowski, and R. A. Marcus, Semiclassical calculation of bound states in multidimensional systems with Fermi resonance, J. Chem. Phys. 71: 2864 (1979).

    Article  CAS  Google Scholar 

  64. E. K. C. Lee, Laser photochemistry of selected vibronic and rotational states, Acc. Chem. Res. 10: 319 (1977).

    Article  CAS  Google Scholar 

  65. W. L. Hase, On the relationship between unimolecular lifetime and relative translational energy distributions, Chem. Phys. Lett. 67: 265 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hase, W.L., Wolf, R.J. (1981). Effect of Potential Energy Surface Properties on Unimolecular Dynamics for a Model Alkyl Radical Dissociation Reaction: H-C-C → H + C=C. In: Truhlar, D.G. (eds) Potential Energy Surfaces and Dynamics Calculations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1735-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1735-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1737-2

  • Online ISBN: 978-1-4757-1735-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics