Reaction, Dissociation, and Energy Transfer as a Function of Initial State for H + H2 on an Accurate Ab Initio Potential Energy Surface

  • Normand C. Blais
  • Donald G. Truhlar

Abstract

We present here the results of quasiclassical trajectory calculations for H + H2 collisions. Our emphasis is to examine the dependence of the energy transfer, dissociation, and atom-exchange processes on the initial internal state of the H2 molecule, including states of high internal energy. For these high-energy states the transition probabilities are large and the concern with zero point energy is minimized; these conditions help justify our use of quasi-classical trajectories for the dynamical calculations. In the present study we use an accurate potential energy surface1-3 so that the calculations are more realistic than is possible for other systems for which the uncertainties in the potential energy surface are much greater.

Keywords

Energy Transfer Internal Energy Potential Energy Surface Rotational Quantum Number Histogram Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. G. Truhlar and C. J. Horowitz, Functional representation of Liu and Siegbahn’s accurate Ab initio potential energy calculations for H + H2, J. Chem. Phys. 68: 2466 (1978).CrossRefGoogle Scholar
  2. D. G. Truhlar and C. J. Horowitz, Functional representation of Liu and Siegbahn’s accurate Ab initio potential energy calculations for H + H2, J. Chem. Phys. 71: 1514(E) (1979).CrossRefGoogle Scholar
  3. 2.
    B. Liu, Ab initio potential energy surface for linear H3, J. Chem. Phys. 58: 1925 (1973).CrossRefGoogle Scholar
  4. 3.
    P. Siegbahn and B. Liu, An accurate three-dimensional potential energy surface for H3, J. Chem. Phys. 68: 2457 (1978).CrossRefGoogle Scholar
  5. 4.
    D. G. Truhlar and R. E. Wyatt, History of H3 kinetics, Annu. Rev. Phys. Chem. 27: 1 (1976).CrossRefGoogle Scholar
  6. 5.
    D. G. Truhlar and R. E. Wyatt, H + H2: Potential energy surfaces and elastic and inelastic scattering, Advan. Chem. Phys. 36: 141 (1977).CrossRefGoogle Scholar
  7. 6.
    R. B. Walker, E. B. Stechel, and J. C. Light, Accurate H3 dynamics on an accurate H3 potential surface, J. Chem. Phys. 69: 2922 (1978).CrossRefGoogle Scholar
  8. 7.
    S. Green and D. G. Truhlar, Rotational excitation of hydrogen molecules by collisions with hydrogen atoms, Astrophys. J. 231: L101 (1979).CrossRefGoogle Scholar
  9. 8.
    R. I. Altkorn and G. C. Schatz, A new method for determining semiclassical tunneling probabilities in atom-diatom reactions, J. Chem. Phys. 72: 3337 (1980).CrossRefGoogle Scholar
  10. 9.
    H. R. Mayne and J. Toennies, Quasiclassical cross sections for the H + H2(0,0) → H + H2 reaction: Comparison of the Siegbahn-Liu-Truhlar-Horowitz and the Porter-Karplus potential surfaces, J. Chem. Phys. 70: 5314 (1979).CrossRefGoogle Scholar
  11. 10.
    H. R. Mayne, Quasiclassical trajectory calculations for H + H2(v=1) on a new potential energy surface, Chem. Phys. Lett. 66: 487 (1979).CrossRefGoogle Scholar
  12. 11.
    W. Kolos and L. Wolniewicz, Potential energy curves for the X \(^{1}\sum_{g}^{+},b ^{3}\sum_{g}^{+}\) and the C 1u states of the hydrogen molecule, J. Chem. Phys. 43: 2429 (1965).CrossRefGoogle Scholar
  13. 12.
    N. C. Blais and D. G. Truhlar, Monte Carlo trajectory study of Ar + H2 collisions. I. Potential energy surface and cross sections for dissociation, recombination, and inelastic scattering, J. Chem. Phys. 65: 5335 (1976).CrossRefGoogle Scholar
  14. 13.
    D. L. Bunker and N. C. Blais, Monte Carlo calculations. V. Three-dimensional study of a general bimolecular interaction potential, J. Chem. Phys. 41: 2377 (1964).CrossRefGoogle Scholar
  15. 14.
    M. Karplus, R. N. Porter, and R. D. Sharma, Exchange reactions with activation energy. I. Simple barrier potential for (H,H2), J. Chem. Phys. 43: 3259 (1965).CrossRefGoogle Scholar
  16. 15.
    J. T. Muckerman and M. B. Faist, Rate constants from Monte Carlo quasiclassical trajectory calculations. A procedure for importance sampling, J. Phys. Chem. 83: 79 (1979).CrossRefGoogle Scholar
  17. 16.
    N. C. Blais and D. G. Truhlar, Monte Carlo trajectory study of Ar + H2: Vibrational selectivity of dissociative collisions at 4500 K and the characteristics of dissociation under equilibrium conditions, J. Chem. Phys. 70: 2962 (1979).CrossRefGoogle Scholar
  18. 17.
    R. C. Tolman, “Statistical Mechanics with Applications to Physics and Chemistry”, Chemical Catalog Co., New York (1927), pp. 266–270.Google Scholar
  19. 18.
    D. G. Truhlar, Interpretation of the activation energy, J. Chem. Educ. 55: 309 (1978).CrossRefGoogle Scholar
  20. 19.
    D. G. Truhlar and J. T. Muckerman, Reactive scattering cross sections III: Quasiclassical and semiclassical methods, in: “Atom-Molecule Collision Theory: A Guide for the Experimentalist”, R. B. Bernstein, ed., Plenum, New York (1979), p. 505.CrossRefGoogle Scholar
  21. 20.
    R. B. Walker, E. B. Stechel, and J. C. Light, unpublished; R. B. Walker, personal communication.Google Scholar
  22. 21.
    R. B. Walker and E. B. Stechel, unpublished results quoted in reference 7.Google Scholar
  23. 22.
    B. C. Garrett and D. G. Truhlar, unpublished.Google Scholar
  24. 23.
    B. C. Garrett and D. G. Truhlar, Reliable Ab initio calculation of a chemical reaction rate and a kinetic isotope effect: H + H2 and D + D2, Proc. Natl. Acad. Sci. USA 76: 4755 (1979).CrossRefGoogle Scholar
  25. 24.
    W. R. Schulz and D. J. LeRoy, Kinetics of the reaction H + p-H2 → o-H2 + H, J. Chem. Phys. 42: 3869 (1965).CrossRefGoogle Scholar
  26. 25.
    K. A. Quickert and D. J. LeRoy, Test of transition-state theory using the experimentally determined rate constant ratio for the reactions H + H2 and H + D2, J. Chem. Phys. 53: 1325 (1970).CrossRefGoogle Scholar
  27. K. A. Quickert and D. J. LeRoy, Test of transition-state theory using the experimentally determined rate constant ratio for the reactions H + H2 and H + D2, J. Chem. Phys. 54: 5444(E) (1971).CrossRefGoogle Scholar
  28. 26.
    A. A. Westenberg and N. deHaas, Atom-molecule kinetics using ESR detection. II. Results for D + H2 → HD + H and H + D2 → HD + D, J. Chem. Phys. 47: 1393 (1967).CrossRefGoogle Scholar
  29. 27.
    A, Farkas, Über die thermische Parawasserstoffwandlung, Z. Phys. Chem. B 10: 419 (1930).Google Scholar
  30. 28.
    H. van Meersche, Contribution à l’étude de la cinetique des reactions entre l’hydrogene atomique et l’hydrogene moleculaire, Bull. Soc. Chim. Belg. 60: 99 (1951).CrossRefGoogle Scholar
  31. 29.
    B. C. Garrett and D. G. Truhlar, Generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules, J. Phys. Chem. 83: 1052 (1979).CrossRefGoogle Scholar
  32. B. C. Garrett and D. G. Truhlar, Generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules, J. Phys. Chem. 83: 3058(E) (1979).Google Scholar
  33. 30.
    B. C. Garrett and D. G. Truhlar, Improved treatment of threshold contributions in variational transition-state theory, J. Phys. Chem. 84: 1730 (1980).CrossRefGoogle Scholar
  34. 31.
    D. G. Truhlar and A. Kuppermann, Exact and approximate quantum mechanical reaction probabilities and rate contants for the collinear H + H2 reaction, J. Chem. Phys. 56: 2232 (1972).CrossRefGoogle Scholar
  35. 32.
    D. G. Truhlar and J. C. Gray, Interpretation and temperature dependence of the energy of activation for the reactions H + Cl2, H2 + I, H + H2, and isotopic analogs, Chem. Phys. Lett. 57: 93 (1978).CrossRefGoogle Scholar
  36. 33.
    J. C. Gray, D. G. Truhlar, and M. Baer, Test of trajectory calculations against quantum mechanical state-to-state and thermal collinear reaction rates for H + Cl2, J. Phys. Chem. 83: 1045 (1979).CrossRefGoogle Scholar
  37. 34.
    N. C. Blais, D. G. Truhlar, and B. C. Garrett, Dynamical calculation of the temperature dependence of the activation energy for a chemical reaction from 444 K to 2400 K, J. Phys. Chem., to be published.Google Scholar
  38. 35.
    B. A. Blackwell, J. C. Polanyi, and J. J. Sloan, Effect of changing reagent energy on reaction dynamics. VIII. Highly vibrationally-excited product from the thermoneutral reaction Cl + OH(v≤9) → HCl(v′≤11) + O, Chem. Phys. 24: 25 (1977).CrossRefGoogle Scholar
  39. 36.
    D. G. Truhlar and D. A. Dixon, Direct mode chemical reactions II: Classical theories, in: “Atom-Molecule Collision Theory: A Guide for the Experimentalist”, R. B. Bernstein, ed., Plenum, New York (1979), p. 595.CrossRefGoogle Scholar
  40. 37.
    J. C. Polanyi, Molecular beam scattering, Faraday Disc. Chem. Soc. 55: 389 (1973).CrossRefGoogle Scholar
  41. 38.
    J. W. Duff and D. G. Truhlar, Tests of semiclassical treatments of vibrational-translational energy transfer in collinear collisions of helium with hydrogen molecules, Chem. Phys. 9: 243 (1975).CrossRefGoogle Scholar
  42. 39.
    J. E. Dove, S. Raynor, and H. Teitelbaum, A quasiclassical trajectory study of molecular energy transfer in H2-He collisions, Chem. Phys. 50: 175 (1980).CrossRefGoogle Scholar
  43. 40.
    N. C. Blais and D. G. Truhlar, Monte Carlo trajectory study of Ar + H2 collisions, Translation to vibration energy transfer from different initial states, in: “State-to-State Chemistry”, P. R. Brooks and E. F. Hayes, eds., American Chemical Society, Washington, D.C. (1977), p. 243.CrossRefGoogle Scholar
  44. 41.
    J. W. Duff, N. C. Blais, and D. G. Truhlar, Monte Carlo trajectory study of Ar + H2 collisions: Thermally averaged vibrational transition rates at 4500 K, J. Chem. Phys. 71: 4304 (1979).CrossRefGoogle Scholar
  45. 42.
    A. E. DePristo, S. D. Augustin, R. Ramaswamy, and H. Rabitz, Quantum number and energy scaling for nonreactive collisions, J. Chem. Phys. 71: 850 (1979).CrossRefGoogle Scholar
  46. 43.
    A. E. DePristo and H. Rabitz, A scaling theoretical analysis of vibrational relaxation experiments: Rotational effects and long-range collisions, Chem. Phys. 44: 171 (1979).CrossRefGoogle Scholar
  47. 44.
    N. C. Blais and D. G. Truhlar, Monte Carlo trajectory study of Ar + H2 collisions. II. Vibrational and rotational enhancement of cross sections for dissociation, J. Chem. Phys. 66: 772 (1977).CrossRefGoogle Scholar
  48. 45.
    R. J. LeRoy, Eigenvalues and certain expectation values for all bound and quasibound levels of ground-state \((X^{1}\sum_{g}^{1})H_{2}\), HD, and D2, technical report WIS-TCI-387, University of Wisconsin, Madison, 1971.Google Scholar
  49. 46.
    M. S. Child, “Molecular Collision Theory”, Academic, London (1974).Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Normand C. Blais
    • 1
  • Donald G. Truhlar
    • 2
  1. 1.Los Alamos Scientific LaboratoryUniversity of CaliforniaLos AlamosUSA
  2. 2.Department of ChemistryUniversity of MinnesotaMinneapolisUSA

Personalised recommendations