Skip to main content

Reaction, Dissociation, and Energy Transfer as a Function of Initial State for H + H2 on an Accurate Ab Initio Potential Energy Surface

  • Chapter
Book cover Potential Energy Surfaces and Dynamics Calculations

Abstract

We present here the results of quasiclassical trajectory calculations for H + H2 collisions. Our emphasis is to examine the dependence of the energy transfer, dissociation, and atom-exchange processes on the initial internal state of the H2 molecule, including states of high internal energy. For these high-energy states the transition probabilities are large and the concern with zero point energy is minimized; these conditions help justify our use of quasi-classical trajectories for the dynamical calculations. In the present study we use an accurate potential energy surface1-3 so that the calculations are more realistic than is possible for other systems for which the uncertainties in the potential energy surface are much greater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. G. Truhlar and C. J. Horowitz, Functional representation of Liu and Siegbahn’s accurate Ab initio potential energy calculations for H + H2, J. Chem. Phys. 68: 2466 (1978).

    Article  CAS  Google Scholar 

  2. D. G. Truhlar and C. J. Horowitz, Functional representation of Liu and Siegbahn’s accurate Ab initio potential energy calculations for H + H2, J. Chem. Phys. 71: 1514(E) (1979).

    Article  Google Scholar 

  3. B. Liu, Ab initio potential energy surface for linear H3, J. Chem. Phys. 58: 1925 (1973).

    Article  CAS  Google Scholar 

  4. P. Siegbahn and B. Liu, An accurate three-dimensional potential energy surface for H3, J. Chem. Phys. 68: 2457 (1978).

    Article  CAS  Google Scholar 

  5. D. G. Truhlar and R. E. Wyatt, History of H3 kinetics, Annu. Rev. Phys. Chem. 27: 1 (1976).

    Article  CAS  Google Scholar 

  6. D. G. Truhlar and R. E. Wyatt, H + H2: Potential energy surfaces and elastic and inelastic scattering, Advan. Chem. Phys. 36: 141 (1977).

    Article  CAS  Google Scholar 

  7. R. B. Walker, E. B. Stechel, and J. C. Light, Accurate H3 dynamics on an accurate H3 potential surface, J. Chem. Phys. 69: 2922 (1978).

    Article  CAS  Google Scholar 

  8. S. Green and D. G. Truhlar, Rotational excitation of hydrogen molecules by collisions with hydrogen atoms, Astrophys. J. 231: L101 (1979).

    Article  CAS  Google Scholar 

  9. R. I. Altkorn and G. C. Schatz, A new method for determining semiclassical tunneling probabilities in atom-diatom reactions, J. Chem. Phys. 72: 3337 (1980).

    Article  CAS  Google Scholar 

  10. H. R. Mayne and J. Toennies, Quasiclassical cross sections for the H + H2(0,0) → H + H2 reaction: Comparison of the Siegbahn-Liu-Truhlar-Horowitz and the Porter-Karplus potential surfaces, J. Chem. Phys. 70: 5314 (1979).

    Article  CAS  Google Scholar 

  11. H. R. Mayne, Quasiclassical trajectory calculations for H + H2(v=1) on a new potential energy surface, Chem. Phys. Lett. 66: 487 (1979).

    Article  CAS  Google Scholar 

  12. W. Kolos and L. Wolniewicz, Potential energy curves for the X \(^{1}\sum_{g}^{+},b ^{3}\sum_{g}^{+}\) and the C 1u states of the hydrogen molecule, J. Chem. Phys. 43: 2429 (1965).

    Article  CAS  Google Scholar 

  13. N. C. Blais and D. G. Truhlar, Monte Carlo trajectory study of Ar + H2 collisions. I. Potential energy surface and cross sections for dissociation, recombination, and inelastic scattering, J. Chem. Phys. 65: 5335 (1976).

    Article  CAS  Google Scholar 

  14. D. L. Bunker and N. C. Blais, Monte Carlo calculations. V. Three-dimensional study of a general bimolecular interaction potential, J. Chem. Phys. 41: 2377 (1964).

    Article  CAS  Google Scholar 

  15. M. Karplus, R. N. Porter, and R. D. Sharma, Exchange reactions with activation energy. I. Simple barrier potential for (H,H2), J. Chem. Phys. 43: 3259 (1965).

    Article  CAS  Google Scholar 

  16. J. T. Muckerman and M. B. Faist, Rate constants from Monte Carlo quasiclassical trajectory calculations. A procedure for importance sampling, J. Phys. Chem. 83: 79 (1979).

    Article  CAS  Google Scholar 

  17. N. C. Blais and D. G. Truhlar, Monte Carlo trajectory study of Ar + H2: Vibrational selectivity of dissociative collisions at 4500 K and the characteristics of dissociation under equilibrium conditions, J. Chem. Phys. 70: 2962 (1979).

    Article  CAS  Google Scholar 

  18. R. C. Tolman, “Statistical Mechanics with Applications to Physics and Chemistry”, Chemical Catalog Co., New York (1927), pp. 266–270.

    Google Scholar 

  19. D. G. Truhlar, Interpretation of the activation energy, J. Chem. Educ. 55: 309 (1978).

    Article  CAS  Google Scholar 

  20. D. G. Truhlar and J. T. Muckerman, Reactive scattering cross sections III: Quasiclassical and semiclassical methods, in: “Atom-Molecule Collision Theory: A Guide for the Experimentalist”, R. B. Bernstein, ed., Plenum, New York (1979), p. 505.

    Chapter  Google Scholar 

  21. R. B. Walker, E. B. Stechel, and J. C. Light, unpublished; R. B. Walker, personal communication.

    Google Scholar 

  22. R. B. Walker and E. B. Stechel, unpublished results quoted in reference 7.

    Google Scholar 

  23. B. C. Garrett and D. G. Truhlar, unpublished.

    Google Scholar 

  24. B. C. Garrett and D. G. Truhlar, Reliable Ab initio calculation of a chemical reaction rate and a kinetic isotope effect: H + H2 and D + D2, Proc. Natl. Acad. Sci. USA 76: 4755 (1979).

    Article  CAS  Google Scholar 

  25. W. R. Schulz and D. J. LeRoy, Kinetics of the reaction H + p-H2 → o-H2 + H, J. Chem. Phys. 42: 3869 (1965).

    Article  CAS  Google Scholar 

  26. K. A. Quickert and D. J. LeRoy, Test of transition-state theory using the experimentally determined rate constant ratio for the reactions H + H2 and H + D2, J. Chem. Phys. 53: 1325 (1970).

    Article  CAS  Google Scholar 

  27. K. A. Quickert and D. J. LeRoy, Test of transition-state theory using the experimentally determined rate constant ratio for the reactions H + H2 and H + D2, J. Chem. Phys. 54: 5444(E) (1971).

    Article  Google Scholar 

  28. A. A. Westenberg and N. deHaas, Atom-molecule kinetics using ESR detection. II. Results for D + H2 → HD + H and H + D2 → HD + D, J. Chem. Phys. 47: 1393 (1967).

    Article  CAS  Google Scholar 

  29. A, Farkas, Über die thermische Parawasserstoffwandlung, Z. Phys. Chem. B 10: 419 (1930).

    CAS  Google Scholar 

  30. H. van Meersche, Contribution à l’étude de la cinetique des reactions entre l’hydrogene atomique et l’hydrogene moleculaire, Bull. Soc. Chim. Belg. 60: 99 (1951).

    Article  Google Scholar 

  31. B. C. Garrett and D. G. Truhlar, Generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules, J. Phys. Chem. 83: 1052 (1979).

    Article  CAS  Google Scholar 

  32. B. C. Garrett and D. G. Truhlar, Generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules, J. Phys. Chem. 83: 3058(E) (1979).

    Google Scholar 

  33. B. C. Garrett and D. G. Truhlar, Improved treatment of threshold contributions in variational transition-state theory, J. Phys. Chem. 84: 1730 (1980).

    Article  CAS  Google Scholar 

  34. D. G. Truhlar and A. Kuppermann, Exact and approximate quantum mechanical reaction probabilities and rate contants for the collinear H + H2 reaction, J. Chem. Phys. 56: 2232 (1972).

    Article  CAS  Google Scholar 

  35. D. G. Truhlar and J. C. Gray, Interpretation and temperature dependence of the energy of activation for the reactions H + Cl2, H2 + I, H + H2, and isotopic analogs, Chem. Phys. Lett. 57: 93 (1978).

    Article  CAS  Google Scholar 

  36. J. C. Gray, D. G. Truhlar, and M. Baer, Test of trajectory calculations against quantum mechanical state-to-state and thermal collinear reaction rates for H + Cl2, J. Phys. Chem. 83: 1045 (1979).

    Article  CAS  Google Scholar 

  37. N. C. Blais, D. G. Truhlar, and B. C. Garrett, Dynamical calculation of the temperature dependence of the activation energy for a chemical reaction from 444 K to 2400 K, J. Phys. Chem., to be published.

    Google Scholar 

  38. B. A. Blackwell, J. C. Polanyi, and J. J. Sloan, Effect of changing reagent energy on reaction dynamics. VIII. Highly vibrationally-excited product from the thermoneutral reaction Cl + OH(v≤9) → HCl(v′≤11) + O, Chem. Phys. 24: 25 (1977).

    Article  CAS  Google Scholar 

  39. D. G. Truhlar and D. A. Dixon, Direct mode chemical reactions II: Classical theories, in: “Atom-Molecule Collision Theory: A Guide for the Experimentalist”, R. B. Bernstein, ed., Plenum, New York (1979), p. 595.

    Chapter  Google Scholar 

  40. J. C. Polanyi, Molecular beam scattering, Faraday Disc. Chem. Soc. 55: 389 (1973).

    Article  Google Scholar 

  41. J. W. Duff and D. G. Truhlar, Tests of semiclassical treatments of vibrational-translational energy transfer in collinear collisions of helium with hydrogen molecules, Chem. Phys. 9: 243 (1975).

    Article  CAS  Google Scholar 

  42. J. E. Dove, S. Raynor, and H. Teitelbaum, A quasiclassical trajectory study of molecular energy transfer in H2-He collisions, Chem. Phys. 50: 175 (1980).

    Article  CAS  Google Scholar 

  43. N. C. Blais and D. G. Truhlar, Monte Carlo trajectory study of Ar + H2 collisions, Translation to vibration energy transfer from different initial states, in: “State-to-State Chemistry”, P. R. Brooks and E. F. Hayes, eds., American Chemical Society, Washington, D.C. (1977), p. 243.

    Chapter  Google Scholar 

  44. J. W. Duff, N. C. Blais, and D. G. Truhlar, Monte Carlo trajectory study of Ar + H2 collisions: Thermally averaged vibrational transition rates at 4500 K, J. Chem. Phys. 71: 4304 (1979).

    Article  CAS  Google Scholar 

  45. A. E. DePristo, S. D. Augustin, R. Ramaswamy, and H. Rabitz, Quantum number and energy scaling for nonreactive collisions, J. Chem. Phys. 71: 850 (1979).

    Article  CAS  Google Scholar 

  46. A. E. DePristo and H. Rabitz, A scaling theoretical analysis of vibrational relaxation experiments: Rotational effects and long-range collisions, Chem. Phys. 44: 171 (1979).

    Article  CAS  Google Scholar 

  47. N. C. Blais and D. G. Truhlar, Monte Carlo trajectory study of Ar + H2 collisions. II. Vibrational and rotational enhancement of cross sections for dissociation, J. Chem. Phys. 66: 772 (1977).

    Article  CAS  Google Scholar 

  48. R. J. LeRoy, Eigenvalues and certain expectation values for all bound and quasibound levels of ground-state \((X^{1}\sum_{g}^{1})H_{2}\), HD, and D2, technical report WIS-TCI-387, University of Wisconsin, Madison, 1971.

    Google Scholar 

  49. M. S. Child, “Molecular Collision Theory”, Academic, London (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Blais, N.C., Truhlar, D.G. (1981). Reaction, Dissociation, and Energy Transfer as a Function of Initial State for H + H2 on an Accurate Ab Initio Potential Energy Surface. In: Truhlar, D.G. (eds) Potential Energy Surfaces and Dynamics Calculations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1735-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1735-8_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1737-2

  • Online ISBN: 978-1-4757-1735-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics