Skip to main content

Reactive Scattering Resonances and their Physical Interpretation: The Vibrational Structure of the Transition State

  • Chapter

Abstract

Quantum mechanical structure in reaction-probability-versus-energy curves for a realistic potential energy surface was first observed about a decade ago,1,2 for the collinear H + H2 system. Such structure had been previously found for a potential energy surface having sharp edges,3 made of piecewise-constant potentials, but in one-mathematical-dimensional (1MD) barrier problems, structure in transmission-probability-versus-energy curves4 is known to disappear when a rectangular barrier is replaced by one which is sufficiently “rounded”, such as parabolic5,6 or Eckart6,7 barriers, and is attributed to edge diffraction effects. The structure in the collinear H + H2 results on a smoothly varying surface, at energies above the vibrational excitation threshold of reaction products, was guessed1b as being due to interference effects between different reaction paths, a guess subsequently confirmed by a quantum mechanical lifetime analysis8 and a semiclassical calculation.9 The former indicated the concomitant presence of and interference between direct and dynamic resonance (Feshbach10) processes. The mechanism of such resonances was attributed to the existence of wells in the vibrationally adiabatic potentials along the minimum energy path.2b

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. G. Truhlar and A. Kuppermann, Quantum mechanics of the H + H2 reaction: Exact scattering probabilities for collinear collisions, J. Chem. Phys. 52: 3841 (1970).

    Article  CAS  Google Scholar 

  2. D. G. Truhlar and A. Kuppermann, Exact and approximate quantum mechanical reaction probabilities and rate constants for the collinear H + H2 reaction, J. Chem. Phys. 56: 2232 (1972).

    Article  CAS  Google Scholar 

  3. S.-F. Wu and R. D. Levine, Quantum mechanical computational studies of chemical reactions: I. Close-coupling method for the collinear H + H2 reaction, Mol. Phys. 22: 881 (1971).

    Article  CAS  Google Scholar 

  4. R. D. Levine and S.-F. Wu, Resonances in reactive collisions: Computational study of the H + H2 collision, Chem. Phys. Lett, 11: 557 (1971).

    Article  Google Scholar 

  5. K. T. Tang, B. Kleinman, and M. Karplus, Solvable quantum-mechanical model of three-body rearrangement scattering, J. Chem. Phys. 50: 1119 (1969).

    Article  CAS  Google Scholar 

  6. L. I. Schiff, “Quantum Mechanics”, 3rd ed., McGraw-Hill, New York (1968), pp. 102–104.

    Google Scholar 

  7. R. P. Bell, The tunnel effect correction for parabolic potential barriers, Trans. Faraday Soc 55: 1 (1959).

    Article  CAS  Google Scholar 

  8. H. S. Johnston, “Gas Phase Reaction Rate Theory”, The Ronald Press, New York (1966), pp. 40–45.

    Google Scholar 

  9. H. Jeffreys and B. Jeffreys, “Methods of Mathematical Physics”, 3rd ed., Cambridge University Press, New York (1962), p. 703.

    Google Scholar 

  10. C. Eckart, The penetration of a potential barrier by electrons, Phys. Rev. 35: 1303 (1930).

    Article  CAS  Google Scholar 

  11. G. C. Schatz and A. Kuppermann, Role of direct and resonant (compound state) processes and of their interferences in the quantum dynamics of the collinear H + H2 exchange reaction, J. Chem. Phys. 59: 964 (1973).

    Article  CAS  Google Scholar 

  12. J. R. Stine and R. A. Marcus, Semiclassical S matrix theory for a compound state resonance in the reactive collinear H + H2 collision, Chera. Phys. Lett. 29: 575 (1974).

    Article  CAS  Google Scholar 

  13. H. Feshbach, Unified theory of nuclear reactions, Ann. Phys. NY 5: 357 (1958).

    Article  CAS  Google Scholar 

  14. H. Feshbach, A unified theory of nuclear reactions. II, Ann. Phys. NY 19: 287 (1962).

    Article  CAS  Google Scholar 

  15. G. C. Schatz, J. M. Bowman, and A. Kuppermann, Large quantum effects in the collinear F + H2 → FH + H reaction, J. Chem. Phys. 58: 4023 (1973).

    Article  CAS  Google Scholar 

  16. G. C. Schatz, J. M. Bowman, and A. Kuppermann, Exact quantum, quasiclassical, and semiclassical reaction probabilities for the collinear F + H2 → FH + H reaction, J. Chem. Phys. 63: 674 (1975).

    Article  CAS  Google Scholar 

  17. G. C. Schatz, J. M. Bowman, and A. Kuppermann, Exact quantum, quasi-classical, and semiclassical reaction probabilities for the collinear F + D2 → FD + D reaction, J. Chem. Phys. 63: 685 (1975).

    Article  CAS  Google Scholar 

  18. S. F. Wu, B. R. Johnson, and R. D. Levine, Quantum mechanical computational studies of chemical reactions: III. Collinear A + BC reaction with some model potential energy surfaces, Mol. Phys. 25: 839 (1973).

    Article  CAS  Google Scholar 

  19. J. N. L. Connor, W. Jakubetz, and J. Manz, Exact quantum mechanical probabilities by the state path sum method: Collinear F + H2 reaction, Mol. Phys. 29: 347 (1975).

    Article  CAS  Google Scholar 

  20. J. N. L. Connor, W. Jakubetz, and J. Manz, The F + H2(v=0) → FH(v′≤3) + H reaction: Quantum collinear reaction probabilities on three different potential energy surfaces, Mol. Phys. 35: 1301 (1978).

    Article  CAS  Google Scholar 

  21. J. N. L. Connor, W. Jakubetz, and J. Manz, Quantum collinear reaction probabilities for vibrationally excited reactants: F + H2(v≤2) → FH(v′≤5) + H, Mol. Phys. 39: 799 (1980).

    Article  CAS  Google Scholar 

  22. B. C. Garrett, D. G. Truhlar, R. S. Grev, A. W. Magnuson, and J. N. L. Connor, Variational transition state theory, vibrationally adiabatic transmission coefficients, and the unified statistical model tested against accurate quantal rate constants for collinear F + H2, H + F2, and isotopic analogs, J. Chem. Phys. 73: 1721 (1980).

    Article  CAS  Google Scholar 

  23. R. E. Wyatt, J. A. McNutt, S. L. Latham, and M. J. Redmon, general discussion, Faraday Disc. Chem. Soc. 62: 322 (1977).

    Google Scholar 

  24. R. E. Wyatt, Quantum mechanics of neutral atom-diatomic molecule reactions, in: “State-to-State Chemistry”, P. R. Brooks and E. F. Hayes, eds., American Chemical Society, Washington (1977), p. 185.

    Chapter  Google Scholar 

  25. S. L. Latham, J. F. McNutt, R. E. Wyatt, and M. J. Redmon, Quantum dynamics of the F + H2 reaction: Resonance models and energy and flux distributions in the transition state, J. Chem. Phys. 69: 3746 (1978).

    Article  CAS  Google Scholar 

  26. M. Baer, An exact quantum mechanical study of the isotopic collinear reactive systems H2 + Cl and D2 + Cl, Mol. Phys. 27: 1429 (1974).

    Article  CAS  Google Scholar 

  27. M. Baer, U. Halavee, and A. Persky, The collinear Cl + XY(X,Y= H,D,T). A comparison between quantum mechanical, classical, and transition state theory results, J. Chem. Phys. 61: 5122 (1974).

    Article  CAS  Google Scholar 

  28. F. M. Chapman, Jr. and E. F. Hayes, Resonances in the collinear inelastic scattering of He by \(H_{2}^{+}\) below the reaction threshold, J. Chem. Phys. 62: 4400 (1975).

    Article  CAS  Google Scholar 

  29. F. M. Chapman, Jr. and E. F. Hayes, Open and closed channel resonances in the collinear inelastic scattering of He by \(H_{2}^{+}\), J. Chem. Phys. 65: 1032 (1976).

    Article  CAS  Google Scholar 

  30. D. J. Kouri and M. Baer, Collinear quantum mechanical calculations of the \(H_{2}^{+}\) proton transfer reaction, Chem. Phys. Lett. 24: 37 (1974).

    Article  CAS  Google Scholar 

  31. J. T. Adams, Collinear quantum mechanical calculations for the reaction \(He+H_{2}^{+}\rightarrow HeH^{+}+H\), Chem. Phys. Lett. 33: 275 (1975).

    Article  CAS  Google Scholar 

  32. F. M. Chapman, Jr. and E. F. Hayes, Quantum dynamical study of resonance effects in the collinear reaction H2 + I → HI + I, J. Chem.Phys. 66: 2554 (1977).

    Article  CAS  Google Scholar 

  33. J. C. Gray, D. G. Truhlar, L. Clemens, J. W. Duff, F. M. Chapman, Jr., G. O. Morrell, and E. F. Hayes, Quasiclassical trajectory calculations compared to quantum mechanical reaction probabilities, rate constants, and activation energies for two different potential energy surfaces for the collinear reaction H2 + I → H + HI, including dependence on initial vibrational state, J. Chem. Phys. 69: 240 (1978).

    Article  CAS  Google Scholar 

  34. J. M. Bowman, S. C. Leasure, and A. Kuppermann, Large quantum effects in a model electronically non-adiabatic reaction: Ba + N2O → BaO* + N2, Chem. Phys. Lett. 43: 374 (1976).

    Article  CAS  Google Scholar 

  35. J. A. Kaye and A. Kuppermann, Collinear quantum mechanical probabilities for the I + HI → IH + I reaction using hyperspherical coordinates, Chem. Phys. Lett. 77: 573 (1981).

    Article  CAS  Google Scholar 

  36. G. C. Schatz and A. Kuppermann, Dynamical resonances in collinear, coplanar, and three-dimensional quantum mechanical reactive scattering, Phys. Rev. Lett. 35: 1266 (1975).

    Article  CAS  Google Scholar 

  37. M. J. Redmon and R. E. Wyatt, Quantum resonance structure in the three-dimensional F + H2 reaction, Chem. Phys. Lett. 63: 209 (1979).

    Article  CAS  Google Scholar 

  38. R. K. Sparks, C. C. Hayden, K. Shobatake, D. M. Neumark, and Y. T. Lee, Molecular beam studies of reaction dynamics of F + H2, D2, in: “Horizons of Quantum Chemistry”, K. Fukui and B. Pullman, eds., D. Reidel Publishing Co., Boston (1980), p. 91.

    Chapter  Google Scholar 

  39. R. N. Porter and M. Karplus, Potential energy surface for H3, J. Chem. Phys. 40: 1105 (1964).

    Article  CAS  Google Scholar 

  40. J. T. Muckerman, unpublished. See reference 11b.

    Google Scholar 

  41. G. C. Schatz and A. Kuppermann, Vibrational deactivation on chemically reactive potential energy surfaces: An exact quantum study of a low barrier collinear model of H + FH, D + FD, H + FD, and D + FH, J. Chem. Phys. 72: 2737 (1980).

    Article  CAS  Google Scholar 

  42. G. C. Schatz and A. Kuppermann, An analysis of resonant and direct processes in collinear atom-diatom reactions, manuscript in preparation.

    Google Scholar 

  43. A. Kuppermann, J. A. Kaye, and J. P. Dwyer, Hyperspherical coordinates in quantum mechanical collinear reactive scattering, Chem. Phys. Lett. 74: 257 (1980).

    Article  CAS  Google Scholar 

  44. E. Merzbacher, “Quantum Mechanics”, 2nd ed., John Wiley & Sons, New York (1970), pp. 108–113.

    Google Scholar 

  45. G. Breit and E. Wigner, Capture of slow neutrons, Phys. Rev. 49: 519 (1936).

    Article  CAS  Google Scholar 

  46. A. M. Lane and R. G. Thomas, R-matrix theory of nuclear reactions, Rev. Mod. Phys. 30: 257 (1958).

    Article  Google Scholar 

  47. G. C. Schatz, the quantum dynamics of atom plus diatom chemical reactions, Ph.D. thesis, California Institute of Technology, Pasadena, CA, 1976, p. 619.

    Google Scholar 

  48. A. Kuppermann, Accurate quantum calculations of reactive systems, Theor. Chem.: Advan. Perspectives 6A: 79 (1981).

    Google Scholar 

  49. E. P. Wigner, Lower limit of the energy derivative of the scattering phase shift, Phys. Rev. 98: 145 (1952); L. Eisenbud, Ph.D. thesis, Princeton University, Princeton, NJ, 1948.

    Article  Google Scholar 

  50. F. T. Smith, Lifetime matrix in collision theory, Phys. Rev. 118: 349 (1960).

    Article  Google Scholar 

  51. R. K. Adair, High-energy maxima in the Tr-p cross sections, Phys. Rev. 113: 338 (1959).

    Article  CAS  Google Scholar 

  52. R. D. Levine, M. Shapiro, and B. R. Johnson, Transition probabilities in molecular collisions: Computational studies of rotational excitation, J. Chem. Phys. 52: 1755 (1970).

    Article  CAS  Google Scholar 

  53. J. A. Kaye and A. Kuppermann, unpublished results.

    Google Scholar 

  54. A. Kuppermann and J. A. Kaye, Collision lifetime matrix analysis of the first resonance in the collinear F + H2 reaction and its isotopically substituted analogs, Chem. Phys. Lett., submitted for publication.

    Google Scholar 

  55. V. K. Babamov and A. Kuppermann, A physical interpretation of the collinear reactive scattering resonances in the F + H2, HD, DH, and D2 systems, manuscript in preparation.

    Google Scholar 

  56. L. M. Delves, Tertiary and general-order collisions, Nucl. Phys. 9: 391 (1959).

    Google Scholar 

  57. L. M. Delves, Tertiary and general-order collisions (II), Nucl. Phys. 20: 275 (1960).

    Article  Google Scholar 

  58. A. Kuppermann and J. P. Dwyer, A simple model of dynamic resonances in collinear reactive scattering, in: “Electronic and Atomic Collisions, Abstracts of Contributed Papers, XIth International Conference on the Physics of Electronic and Atomic Collisions, Kyoto”, K. Takayanagi and N. Oda, eds., The Society for Atomic Collision Research, Japan (1979), pp. 888-889; J. P. Dwyer and A. Kuppermann, Resonances in collinear reactive scattering: A simple hyperspherical coordinate model, manuscript in preparation.

    Google Scholar 

  59. J. M. Bowman, G. C. Schatz, and A. Kuppermann, unpublished calculations. See also.

    Google Scholar 

  60. B. C. Garrett and D. G. Truhlar, Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules and isotopically substituted hydrogen molecules, J. Phys. Chem. 83: 1079 (1979).

    Article  CAS  Google Scholar 

  61. B. C. Garrett and D. G. Truhlar, Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules and isotopically substituted hydrogen molecules, J. Phys. Chem. 84: 682(E) (1980).

    Google Scholar 

  62. A. Kuppermann and G. C. Schatz, Quantum mechanical reactive scattering: An accurate three-dimensional calculation, J. Chem. Phys. 62: 2502 (1975).

    Article  CAS  Google Scholar 

  63. G. C. Schatz and A. Kuppermann, Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems. I. Theory, J. Chem. Phys. 65: 4642 (1976).

    Article  CAS  Google Scholar 

  64. G. C. Schatz and A. Kuppermann, Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems. II. Accurate cross sections for H + H2, J. Chem. Phys. 65: 4668 (1976).

    Article  CAS  Google Scholar 

  65. A. B. Elkowitz and R. E. Wyatt, Quantum mechanical reaction cross sections for the three-dimensional hydrogen exchange reaction, J. Chem. Phys. 62: 2504 (1975).

    Article  CAS  Google Scholar 

  66. R. B. Walker, E. B. Stechel, and J. C. Light, Accurate H3 dynamics on an accurate H3 potential energy surface, J. Chem. Phys. 69: 2922 (1978).

    Article  CAS  Google Scholar 

  67. H. Ehrhardt, Recent experimental progress in e-H, e-He+, and e-He resonance scattering, in: “Physics of the One and Two Electron Atoms”, F. Bopp and H. Kleinpoppen, eds., North-Holland Publishing Co., Amsterdam (1969), p. 598.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kuppermann, A. (1981). Reactive Scattering Resonances and their Physical Interpretation: The Vibrational Structure of the Transition State. In: Truhlar, D.G. (eds) Potential Energy Surfaces and Dynamics Calculations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1735-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1735-8_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1737-2

  • Online ISBN: 978-1-4757-1735-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics