Skip to main content

Theoretical Studies of Selected Reactions in the Hydrogen-Oxygen System

  • Chapter
Potential Energy Surfaces and Dynamics Calculations

Abstract

For a non-collinear polyatomic molecule composed of N atoms, the potential energy surface is a parametric function of (3N-6) internal coordinates. If M calculations are required to specify the energy dependence for one coordinate, M3N-6 calculations would be required to fully specify the surface. Clearly, a full ab initio characterization of a molecular potential energy surface is only possible for systems with few atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. B. Wilson, Jr., J. C. Decius, and P. G. Cross, “Molecular Vibrations. The Theory of Infrared and Raman Vibrational Spectra”, McGraw-Hill, New York (1955).

    Google Scholar 

  2. W. H. Miller, N. C. Handy, and J. E. Adams, Reaction path Hamiltonian for polyatomic molecules, J. Chem. Phys. 72: 99 (1980).

    Article  CAS  Google Scholar 

  3. S. P. Walch, T. H. Dunning, Jr., R. C. Raffenetti, and F. W. Bobrowicz, A theoretical study of the potential surface for O(3P) + H2, J. Chem. Phys, 72: 406 (1980).

    Article  CAS  Google Scholar 

  4. S. P. Walch, A. F. Wagner, T. H. Dunning, Jr., and G. C. Schatz, Theoretical studies of the O(3P) + H2 reaction, J. Chem. Phys. 72: 2894 (1980).

    Article  CAS  Google Scholar 

  5. S. P. Walch and T. H. Dunning, Jr., A theoretical study of the potential energy surface for OH + H2, J. Chem. Phys. 72: 1303 (1980).

    Article  CAS  Google Scholar 

  6. G. C. Schatz and S. P. Walch, An Ab initio calculation of the rate constant for the OH + H2 → H2O + H reaction, J. Chem. Phys. 72: 776 (1980).

    Article  CAS  Google Scholar 

  7. T. H. Dunning, Jr., S. P. Walch, and M. M. Goodgame, Theoretical characterization of the potential energy curve for hydrogen atom addition to molecular oxygen, J. Chem. Phys., to be published.

    Google Scholar 

  8. I. Glassman, “Combustion”, Academic, New York (1977), chapter 3

    Google Scholar 

  9. J. A. Miller and R. J. Kee, Chemical nonequilibrium effects in hydrogen-air laminar jet diffusion flames, J. Phys. Chem. 81: 2534 (1977).

    Article  CAS  Google Scholar 

  10. D. L. Baulch, D. D. Drysdale, D. G. Horne, and A. C. Lloyd, “Evaluated Kinetic Data for High Temperature Reactions”, Vol. 1, Butterworths, London (1972).

    Google Scholar 

  11. G. Dixon-Lewis and D. J. Williams, The oxidation of hydrogen and carbon monoxide, in: “Comprehensive Chemical Kinetics”, Vol. 17, Elsevier Scientific Publishing Co., New York (1977), p. 1.

    Google Scholar 

  12. N. Cohen and K. Westberg, unpublished.

    Google Scholar 

  13. See, e.g., W. A. Goddard III, T. H. Dunning, Jr., W. J. Hunt, and P. J. Hay, Generalized valence bond description of bonding in low-lying states of molecules, Acc. Chem. Res. 6: 368 (1973).

    Article  CAS  Google Scholar 

  14. B. J. Moss, F. W. Bobrowicz, and W. A. Goddard III, The generalized valence bond description of O2, J. Chem. Phys. 63: 4632 (1975).

    Article  CAS  Google Scholar 

  15. P. J. Hay and T. H. Dunning, Jr., Polarization CI wavefunctions: The valence states of the NH radical, J. Chem. Phys. 64: 5077 (1976).

    Article  CAS  Google Scholar 

  16. T. H. Dunning, Jr., The low-lying states of hydrogen fluoride: Potential energy curves for the X1+, 3+, 3∏, and 1∏ states, J. Chem. Phys. 65: 3254 (1976).

    Article  Google Scholar 

  17. L. B. Harding and W. A. Goddard III, Intermediates in the chem-iluminescent reaction of singlet oxygen with ethylene. Ab vnitio studies, J. Amer. Chem. Soc. 99: 4520 (1977).

    Article  CAS  Google Scholar 

  18. S. P. Walch and T. H. Dunning, Jr., Calculated barrier to hydrogen atom abstraction from CH4 by O(3P), J. Chem. Phys. 72: 3221 (1980).

    Article  CAS  Google Scholar 

  19. S. P. Walch, Calculated barriers to abstraction and exchange for CH4 + H, J. Chem. Phys. 72: 4932 (1980).

    Article  CAS  Google Scholar 

  20. T. H. Dunning, Jr., Theoretical characterization of the barriers to abstraction and exchange in H + HX (X = F, Cl, Br, I), to be published.

    Google Scholar 

  21. H. F. Schaefer III, R. A. Klemm, and F. E. Harris, First-order wavefunctions, orbital correlation energies, and electron affinities of first-row atoms, J. Chem. Phys. 51: 4643 (1969).

    Article  CAS  Google Scholar 

  22. H. F. Schaefer III and C. F. Bender, Multiconfiguration wave-functions for the water molecule, J. Chem. Phys. 55: 1720 (1971).

    Article  CAS  Google Scholar 

  23. H. S. Johnston, “Gas Phase Reaction Rate Theory”, Ronald Press, New York (1966), chapter 8.

    Google Scholar 

  24. D. G. Truhlar, Accuracy of trajectory calculations and transition state theory for thermal rate constants of atom transfer reactions, J. Phys. Chem. 83: 188 (1979).

    Article  CAS  Google Scholar 

  25. B. C. Garrett and D. G. Truhlar, Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules, J. Phys. Chem. 83: 1079 (1979).

    Article  CAS  Google Scholar 

  26. B. C. Garrett and D. G. Truhlar, Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules, J. Phys. Chem. 84: 6821(E) (1980).

    Google Scholar 

  27. B. C. Garrett, D. G. Truhlar, R. S. Grev, and A. W. Magnuson, Improved treatment of threshold contributions in variational transition-state theory, J. Phys. Chem. 84: 1730 (1980).

    Article  CAS  Google Scholar 

  28. B. C. Garrett, D. G. Truhlar, R. S. Grev, A. W. Magnuson, and J. N. L. Connor, Variational transition state theory, vibrationally adiabatic transmission coefficients and the unified statistical model tested against accurate quantal rate constants for collinear F + H2, H + F2, and isotopic analogs, J. Chem. Phys. 73: 1721 (1980).

    Article  CAS  Google Scholar 

  29. B. C. Garrett and D. G. Truhlar, Importance of quartic anharmonicity for bending partition functions in transition-state theory, J. Phys. Chem. 83: 1915 (1979).

    Article  CAS  Google Scholar 

  30. E. P. Wigner, Uber das Uberschreiten von Potentialschwellen bei chemischen Reaktionen, Z. Phys. Chem. Abt. B19: 203 (1932).

    CAS  Google Scholar 

  31. R. F. W. Bader and R. A. Gangi, The lowest singlet and triplet potential surfaces of H2O, Chem. Phys. Lett. 6: 312 (1970).

    Article  CAS  Google Scholar 

  32. R. F. W. Bader and R. A. Gangi, Theoretical investigations of the chemistry of singlet and triplet species. I. Insertion and abstraction reactions, J. Amer. Chem. Soc. 93: 1831 (1971).

    Article  CAS  Google Scholar 

  33. C. F. Bender, P. K. Pearson, S. V. O’Neil, and H. F. Schaefer III, Potential energy surface including electron correlation for the chemical F + H2 → FH + H. I. Preliminary surface, J. Chem. Phys. 56: 4626 (1972).

    Article  CAS  Google Scholar 

  34. C. F. Bender, S. V. O’Neil, P. K. Pearson, and H. F. Schaefer III, Potential energy surface including electron correlation for F + H2 → FH + H: Refined linear surface, Science 176: 1412 (1972).

    Article  CAS  Google Scholar 

  35. R. E. Howard, A. D. McLean, and W. A. Lester, Jr., Extended basis first-order. CI study of the 1A′, 3A″, 1A″, and B1A′ potential energy surfaces of the \(O(^{3}P, ^{1}D)+H_{2}(^{1}\sum_{g}^{+})\) reaction, J. Chem. Phys. 71: 2412 (1980).

    Article  Google Scholar 

  36. W. A. Goddard III, Selection rules for chemical reactions using the orbital phase continuity principle, J. Amer. Chem. Soc. 94: 793 (1972).

    Article  CAS  Google Scholar 

  37. B. R. Brooks and H. F. Schaefer III, Reactions of carbynes. Potential energy surfaces for the doublet and quartet methylidyne (CH) reactions with molecular hydrogen, J. Chem. Phys. 67: 5146 (1977).

    Article  CAS  Google Scholar 

  38. S. P. Walch, A localized orbital description of CH(2∏) insertion reactions. Least-motion and non-least-motion pathways for the dimerization reaction CH(2∏) + CH(2∏) → C2H2, J. Chem. Phys., submitted for publication.

    Google Scholar 

  39. C. W. Bauschlicher, Jr., H. F. Schaefer III, and C. F. Bender, The least-motion insertion reaction CH2(1A1) + H2 → CH4. Theoretical study of a process forbidden by orbital symmetry, J. Amer. Chem. Soc. 98: 1653 (1976).

    Article  CAS  Google Scholar 

  40. C. W. Bauschlicher, Jr., K. Haber, H. F. Schaefer III, and C. F. Bender, Concerted non-least-motion pathway for the singlet methylene insertion reaction CH2(1A1) + H2 → CH4, J. Amer. Chem. Soc. 99: 3610 (1977).

    Article  CAS  Google Scholar 

  41. H. Kollmar and V. Staemmler, Ab initio calculations of the potential energy surface of the reaction of singlet methylene with the hydrogen molecule, Theoret. Chim. Acta 51: 207 (1979).

    Article  CAS  Google Scholar 

  42. B. Zurawski and W. Kutzelnigg, Ab initio calculation of the reaction path for the addition of singlet (1A1) methylene to ethylene, J. Amer. Chem. Soc. 100: 2654 (1978).

    Article  CAS  Google Scholar 

  43. G. S. Hammond, A correlation of reaction rates, J. Amer. Chem. Soc. 77: 334 (1955).

    Article  CAS  Google Scholar 

  44. M. H. Mok and J. C. Polanyi, Location of energy barriers, II. Correlation with barrier height, J. Chem. Phys. 51: 1451 (1969).

    Article  CAS  Google Scholar 

  45. B. Rosen, “Spectroscopic Data Relative to Diatomic Molecules”, Pergamon, New York (1970).

    Google Scholar 

  46. G. C. Schatz, A. F. Wagner, S. P. Walch, and J. M. Bowman, A comparative study of the reaction dynamics of several potential energy surfaces for O(3P) + H2 → OH + H. I., to be published.

    Google Scholar 

  47. R. Schinke and W. A. Lester, Jr., Trajectory study of O + H2 reactions on fitted Ab initio surfaces. I. Triplet case, J. Chem. Phys. 70: 4893 (1979).

    Article  CAS  Google Scholar 

  48. R. Schinke and W. A. Lester, Jr., Trajectory study of O + H2 reactions on fitted Ab initio surfaces. I. Triplet case, J. Chem. Phys. 72: 6821(E) (1980).

    Google Scholar 

  49. A. A. Westenberg and N. de Haas, Atom-molecule kinetics using ESR detection, III. Results for O + D2 → OD + D and theoretical comparison with O + H2 → OH + H, J. Chem. Phys. 47: 4241 (1967).

    Article  Google Scholar 

  50. P. A. Whitlock, J. T. Muckerman, and E. R. Fisher, “Theoretical Investigations of the Energetics of the Reactions O(3P,1D) + H2 and C(1D) + H2”, Research Institute for Engineering Sciences, Wayne State University, Detroit (1976).

    Google Scholar 

  51. B. R. Johnson and N. W. Winter, Classical trajectory study of the effect of vibrational energy on the reaction of molecular hydrogen with atomic oxygen, J. Chem. Phys. 66: 4116 (1977).

    Article  CAS  Google Scholar 

  52. K. T. Lee, J. M. Bowman, A. F. Wagner, and G. C. Schatz, The reaction dynamics of several potential energy surfaces for O(3P) + H2 → OH + H. II. Transition state theory with collinear exact quantum transmission coefficients, to be published.

    Google Scholar 

  53. G. Herzberg, “Molecular Spectra and Molecular Structure, III. Electronic Spectra and Electronic Structure of Polyatomic Molecules”, D. Van Nostrand Company, Inc., Princeton (1966).

    Google Scholar 

  54. I. W. M. Smith and R. Zellner, Rate measurements of reactions of OH by resonance absorption. Part 3. Reactions of OH with H2, D2, and hydrogen and deuterium halides, J. Chem. Soc. Faraday Trans. II 70: 1045 (1974).

    Article  CAS  Google Scholar 

  55. G. C. Schatz and H. Elgersma, A quasiclassical trajectory study of product vibrational distributions in the OH + H2 → H2O + H reaction, Chem. Phys. Lett. 73: 21 (1980).

    Article  CAS  Google Scholar 

  56. J. E. Spencer, H. Endo, and G. P. Glass, Reactions of vibrationally excited OH, in: “Sixteenth Symposium (International) on Combustion”, The Combustion Institute, Pittsburgh (1976), p. 829.

    Google Scholar 

  57. G. C. Light and J. H. Matsumoto, The effect of vibrational excitation in the reactions of OH with H2, Chem. Phys. Lett. 58: 578 (1978).

    Article  CAS  Google Scholar 

  58. R. Zellner and W. Steinert, unpublished (quoted in reference 43).

    Google Scholar 

  59. G. C. Schatz, A quasiclassical trajectory study of reagent vibrational excitation effects in the OH + H2 → H2O + H reaction, J. Chem. Phys. 74: 1133 (1981).

    Article  CAS  Google Scholar 

  60. J. C. Polyani and W. H. Wong, Location of energy barriers, I. Effect on the dynamics of reactions A + BC, J. Chem. Phys. 51: 1439 (1969).

    Article  Google Scholar 

  61. D. W. Trainor and C. W. Von Rosenberg, Energy partitioning in the products of elementary reaction involving OH-radicals, in: “Fifteenth Symposium (International) on Combustion”, The Combustion Institute, Pittsburgh (1974), p. 755.

    Google Scholar 

  62. C. F. Melius and R. J. Blint, The potential energy surface of the HO2 molecular system, Chem. Phys. Lett. 64: 183 (1979).

    Article  CAS  Google Scholar 

  63. S. R. Langhoff and R. L. Jaffe, Theoretical study of the four lowest doublet electronic states of the hydroperoxyl radical: Application to photodissociation, J. Chem. Phys. 71: 1475 (1979).

    Article  CAS  Google Scholar 

  64. Y. Beers and C. J. Howard, The spectrum of DO2 near 60 GHz and the structure of the hydroperoxyl radical, J. Chem. Phys. 64: 1541 (1976).

    Article  CAS  Google Scholar 

  65. S. N. Foner and R. L. Hudson, Mass spectrometry of the HO2 free radical, J. Chem. Phys. 36: 2681 (1962).

    Article  CAS  Google Scholar 

  66. D. E. Milligan and M. E. Jacox, Infrared spectroscopic evidence for the species HO2, J. Chem. Phys. 38: 2627 (1963).

    Article  CAS  Google Scholar 

  67. D. E. Milligan and M. E. Jacox, Infrared spectroscopic evidence for the species HO2, J. Chem. Phys. 40: 605(E) (1964).

    Google Scholar 

  68. M. E. Jacox and D. E. Milligan, Spectrum and structure of the HO2 radical, J. Mol. Spectry. 42: 495 (1972).

    Article  CAS  Google Scholar 

  69. D. W. Smith and L. Andrews, Argon matrix infrared spectra and vibrational analysis of the hydroperoxyl and deuteroperoxyl free radicals, J. Chem. Phys, 60: 81 (1974).

    Article  CAS  Google Scholar 

  70. M. J. Kurylo, Absolute rate constants for the reaction H + O2 + M → HO2 + M over the temperature range 203–404 K, J. Phys. Chem. 76: 3518 (1972).

    Article  CAS  Google Scholar 

  71. W. Wong and D. D. Davis, A flash photolysis-resonance fluorescence study of the reaction of atomic hydrogen with molecular oxygen H + O2 + M → HO2 + M, Int. J. Chem. Kinet. 6: 401 (1974).

    Article  CAS  Google Scholar 

  72. R. J. Blint, Calculation of the rate constant for the reaction of atomic hydrogen with molecular oxygen to form the free radical HO2, J. Chem. Phys. 73: 765 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dunning, T.H., Walch, S.P., Wagner, A.F. (1981). Theoretical Studies of Selected Reactions in the Hydrogen-Oxygen System. In: Truhlar, D.G. (eds) Potential Energy Surfaces and Dynamics Calculations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1735-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1735-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1737-2

  • Online ISBN: 978-1-4757-1735-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics