Overview of Reactive Scattering

  • George C. Schatz

Abstract

In this paper, I hope to summarize and illustrate the field of reactive molecular scattering, focusing particularly on how modern theoretical methods are used in applications to experimentally relevant systems. I should note at the outset that many of the papers in this volume provide excellent examples of such applications. Since there have been several very recent reviews of reactive scattering,1-12 I will not attempt to survey this topic exhaustively. Instead, I will concentrate on some of the most recent advances in the field and on recent applications to systems which have not previously been extensively reviewed.

Keywords

Potential Energy Surface Classical Trajectory Transition State Theory Trajectory Method Transition State Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. B. Walker and J. C. Light, Reactive molecular collisions, Annu. Rev. Phys. Chenu 31: 401 (1980).Google Scholar
  2. 2.
    J. N. L. Connor, Reactive molecular collision calculations, Comput. Phys. Commun. 17: 117 (1979).Google Scholar
  3. 3.
    R. B. Bernstein, Reactive scattering: Recent advances in theory and experiment, Advan. At. Mol. Phys. 15: 167 (1979).Google Scholar
  4. 4.
    R. B. Bernstein, ed., “Atom-Molecule Collision Theory: A Guide for the Experimentalist”, Plenum, New York (1979).Google Scholar
  5. 5.
    R. D. Levine, Information theory approach to molecular reaction dynamics, Annu. Rev. Phys. Chem. 29: 59 (1978).Google Scholar
  6. 6.
    R. D. Levine and J. L. Kinsey, Information-theoretic approach: Application to molecular collisions, in: reference 4, chapter 22.Google Scholar
  7. 7.
    J. C. Light, Reactive scattering cross sections I: General quantal theory, in: reference 4, chapter 14.Google Scholar
  8. 8.
    D. G. Truhlar and J. T. Muckerman, Reactive scattering cross sections II: Quasiclassical and semiclassical methods, in: reference 4, chapter 16.Google Scholar
  9. 9.
    D. G. Truhlar, Accuracy of trajectory calculations and transition state theory for thermal rate constants of atom transfer reactions, J. Phys. Chem. 83: 188 (1979).Google Scholar
  10. 10.
    R. E. Wyatt, Direct-mode chemical reactions I: Methodology for accurate quantal calculations, in: reference 4, chapter 17.Google Scholar
  11. 11.
    R. E. Wyatt, Reactive scattering cross sections II: Approximate quantal treatments, in: reference 4, chapter 15.Google Scholar
  12. 12.
    D. G. Truhlar and D. A. Dixon, Direct-mode chemical reactions II: Classical theories, in: reference 4, chapter 18.Google Scholar
  13. 13.
    J. M. Bowman and A. Kuppermann, A seminumerical approach to the construction and fitting of triatomic potential energy surfaces, Chem. Phys. Lett. 34: 523 (1975).Google Scholar
  14. 14.
    J. N. L. Connor, W. Jakubetz, and J. Manz, Exact quantum transition probabilities by the state path sum method: Collinear F + H2 reaction, Mol. Phys. 29: 347 (1975).Google Scholar
  15. 15.
    S. K. Gray and J. S. Wright, Classical trajectories for the H + H2 reaction on a spline generated potential energy surface, J. Chem. Phys. 66: 2867 (1977).Google Scholar
  16. 16.
    A. F. Wagner, G. C. Schatz, and J. M. Bowman, The evaluation of fitting functions for the representation of an O + H2 potential energy surface, J. Chem. Phys., submitted for publication.Google Scholar
  17. 17.
    G. C. Schatz, A. F. Wagner, S. P. Walch, and J. M. Bowman, A comparative study of the reaction dynamics of several potential energy surfaces for O(3P) + H2 → OH + H. I, J. Chem. Phys., submitted for publication.Google Scholar
  18. 18.
    A. Kuppermann and G. C. Schatz, Quantum mechanical reactive scattering: An accurate three-dimensional calculation, J. Chem. Phys. 62: 2502 (1975).Google Scholar
  19. 19.
    G. C. Schatz and A. Kuppermann, Quantum mechanical reactive scattering for three dimensional atom plus diatom systems II. Accurate cross sections for H + H2, J. Chem. Phys. 65: 4668 (1976).Google Scholar
  20. 20.
    A. B. Elkowitz and R. E. Wyatt, Quantum mechanical reaction cross sections for the three dimensional hydrogen exchange reaction, J. Chem. Phys. 62: 2504 (1975).Google Scholar
  21. 21.
    A. B. Elkowitz and R. E. Wyatt, Three dimensional natural coordinate asymmetric top theory of reactions: Application to H + H2, J. Chem. Phys. 63: 702 (1975).Google Scholar
  22. 22.
    R. B. Walker, E. B. Stechel, and J. C. Light, Accurate H3 dynamics on an accurate H3 potential surface, J. Chem. Phys. 69: 2922 (1978).Google Scholar
  23. 23.
    G. C. Schatz, J. M. Bowman, and A. Kuppermann, Exact quantum, quasiclassical and semiclassical reaction probabilities for the collinear F + H2 → FH + H reaction, J. Chem. Phys. 63: 674 (1976).Google Scholar
  24. 24.
    M. Karplus, R. N. Porter, and R. D. Sharma, Exchange reactions with activation energy. I. Simple barrier potential for (H, H2), J. Chem. Phys. 43: 3259 (1965).Google Scholar
  25. 25.
    T. F. George and W. H. Miller, Complex valued classical trajectories for linear reactive collisions of H + H2 below the classical threshold, J. Chem. Phys. 56: 5722 (1972).Google Scholar
  26. 26.
    T. F. George and W. H. Miller, Classical S-matrix theory of reactive tunneling: Linear H + H2 collisions, J. Chem. Phys. 57: 2458 (1972).Google Scholar
  27. 27.
    A. Kuppermann, J. A. Kaye, and J. P. Dwyer, Hyperspherical coordinates in quantum mechanical collinear reactive scattering, Chem. Phys. Lett., in press.Google Scholar
  28. 28.
    A. B. Elkowitz and R. E. Wyatt, jz-Conserving approximation for the hydrogen exchange reaction, Mol. Phys. 31: 189 (1976).Google Scholar
  29. 29.
    A. Kuppermann, G. C. Schatz, and J. Dwyer, Angular momentum decoupling approximations in the quantum dynamics of reactive systems, Chem. Phys. Lett. 45: 71 (1977).Google Scholar
  30. 30.
    M. J. Redmon and R. E. Wyatt, Computational methods in reactive scattering, Int. J. Quantum Chem. Symp. 11: 343 (1977).Google Scholar
  31. 31.
    M. J. Redmon and R. E. Wyatt, Quantum resonance structure in the three dimensional F + H2 reaction, Chem. Phys. Lett. 63: 209 (1979).Google Scholar
  32. 32.
    J. M. Bowman and K, T. Lee, Sudden approximation calculations of reactive scattering: The H + H2 reaction, J. Chem. Phys. 68: 3940 (1978).Google Scholar
  33. 33.
    J. M. Bowman and K. T. Lee, Sudden rotation reactive scattering: Theory and application to 3-D H + H2, J. Chem. Phys. 72: 5071 (1980).Google Scholar
  34. 34.
    M. Baer, V. Khare, and D. J. Kouri, Integral total reactive cross section calculations within the infinite order sudden approximation, Chem. Phys. Lett. 68: 378 (1979).Google Scholar
  35. 35.
    M. Baer, H. R. Mayne, V. Khare, and D. J. Kouri, Integral and differential cross sections for the H2(vi=l) + H reaction. A comparison between average l labelled infinite-order sudden approximation and classical treatments, Chem. Phys. Lett. 72: 269 (1980).Google Scholar
  36. 36.
    B. H. Choi and K. T. Tang, Three dimensional quantum mechanical studies of the H + H2 reactive scattering, J. Chem. Phys. 65: 5161 (1976).Google Scholar
  37. 37.
    D. C. Clary and J. N. L. Connor, Distorted wave calculations for the three dimensional chemical reaction H + H2(v≤2, j=0) → H2(v′<2,j′,mj′) + H, Chem. Phys. 48: 175 (1980).Google Scholar
  38. 38.
    Y. Y. Yung, B. H. Choi, and K. T. Tang, Three dimensional quantum mechanical studies of D + H2 → DH + H scattering. III. On the Ab initio potential surface, J. Chem. Phys. 72: 621 (1980).Google Scholar
  39. 39.
    Y. Shan, B. H. Choi, R. T. Poe, and K. T. Tang, Three dimensional quantum mechanical study of the F + H2 reactive scattering, Chem. Phys. Lett. 57: 379 (1978).Google Scholar
  40. 40.
    D. C. Clary and J. N. L. Connor, Application of the vibration-ally adiabatic and static distorted wave Born approximations to the reaction H + F2(v=0, j=0) → HF(v′,j′) + F, Chem. Phys. Lett. 66: 493 (1979).Google Scholar
  41. 41.
    R. N. Porter and L. M. Raff, Classical trajectory methods in molecular collisions, in: “Dynamics of Molecular Collisions, Part B”, W, H. Miller, ed., Plenum, New York (1976), p. 1.Google Scholar
  42. 42.
    R. N. Porter, Molecular trajectory calculations, Annu. Rev. Phys. Chem. 25: 317 (1974).Google Scholar
  43. 43.
    R. N. Porter, L. M. Raff, and W. H. Miller, Quasiclassical selection of initial coordinates and momenta for a rotating Morse oscillator, J. Chem. Phys. 63: 2214 (1975).Google Scholar
  44. 44.
    N. C. Blais and D. G. Truhlar, Monte Carlo trajectory study of Ar + H2 collisions. I. Potential energy surface and cross sections for dissociation, recombination, and inelastic scattering, J. Chem. Phys. 65: 5335 (1976).Google Scholar
  45. 45.
    W. Eastes and R. A. Marcus, Semiclassical calculation of bound states of a multidimensional system, J. Chem. Phys. 61: 4301 (1974).Google Scholar
  46. 46.
    D. W. Noid and R. A. Marcus, Semiclassical calculation of bound states in a multidimensional system. Use of Poincaré’s surface of section, J. Chem. Phys. 62: 2119 (1975).Google Scholar
  47. 47.
    D. W. Noid and R. A. Marcus, Semiclassical calculation of bound states in a multidimensional system for nearly 1:1 degenerate systems, J. Chem. Phys. 67: 559 (1977).Google Scholar
  48. 48.
    D. W. Noid, M. L. Koszykowski, and R. A. Marcus, Semiclassical calculation of bound states in multidimensional systems with Fermi resonance, J. Chem. Phys. 71: 2864 (1979).Google Scholar
  49. 49.
    S. Chapman, B. C. Garrett, and W. H. Miller, Semiclassical eigenvalues for nonseparable systems: Nonperturbative solution of the Hamilton-Jacobi equation in action-angle variables, J. Chem. Phys. 64: 502 (1976).Google Scholar
  50. 50.
    N. C. Handy, S. M. Colwell, and W. H. Miller, Semiclassical methods for vibrational energy levels of triatomic molecules, Faraday Disc. Chem. Soc. 62: 29 (1977).Google Scholar
  51. 51.
    K. S. Sorbie, Semiclassical eigenvalues for nonseparable bound systems from classical trajectories, Mol. Phys. 32: 1577 (1976).Google Scholar
  52. 52.
    K. S. Sorbie and N. C. Handy, Semiclassical eigenvalues for nonseparable bound systems from classical trajectories: The degenerate case, Mol. Phys. 32: 1322 (1976).Google Scholar
  53. 53.
    I. C. Percival, Semiclassical theory of bound states, Advan. Chem. Phys. 36: 1 (1977).Google Scholar
  54. 54.
    C. Jaffe and W. P. Reinhardt, Time-independent methods in classical mechanics: Calculation of invariant tori and semiclassical energy levels via classical Van Vleck transformations, J. Chem. Phys. 71: 1862 (1979).Google Scholar
  55. 55.
    J. B. DeLos and R. T. Swimm, Semiclassical calculation of energy levels for nonseparable systems, Chem. Phys. Lett. 47: 76 (1977).Google Scholar
  56. 56.
    G. C. Schatz and M. D. Moser, A method for determining “good” action-angle variables and semiclassical eigenvalues in non-separable systems, Chem. Phys. 35: 239 (1978).Google Scholar
  57. 57.
    T. Mulloney and G. C. Schatz, Classical perturbation theory of good action-angle variables: Application to semiclassical eigenvalues and to collisional energy transfer in polyatomic molecules, J. Phys. Chem. 83: 989 (1979).Google Scholar
  58. 58.
    S. M. Colwell and N. G. Handy, Vibrational energies of triatomic molecules using a semiclassical trajectory method, Mol. Phys. 35: 1183 (1976).Google Scholar
  59. 59.
    M. A. Ratner and R. B. Gerber, A semiclassical self-consistent field (SC SCF) approximation for eigenvalues of coupled-vibration systems, Chem. Phys. Lett. 68: 195 (1979).Google Scholar
  60. 60.
    G. C. Schatz and M. D. Moser, The importance of anharmonicity on the rates of energy transfer in rare gas/CO2 systems, J. Chem. Phys. 68: 1992 (1978).Google Scholar
  61. 61.
    G. C. Schatz and T. Mulloney, Collisional energy transfer in polyatomic molecules: A study of anharmonicity effects in Kr + CO2, J. Chem. Phys. 71: 5257 (1979).Google Scholar
  62. 62.
    G. C. Schatz, A quasiclassical trajectory study of collisional excitation in Li+ + CO2, J. Chem. Phys. 72: 3929 (1980).Google Scholar
  63. 63.
    G. C. Schatz, How symmetric stretch excitation in a triatomic molecule can be more efficient than asymmetric stretch excitation in enhancing reaction rates in atom plus triatom reactions, J. Chem. Phys. 71: 542 (1979).Google Scholar
  64. 64.
    G. C. Schatz and H. Elgersma, A quasiclassical trajectory study of product vibrational distributions in the OH + H2 → H2O + H reaction, Chem. Phys. Lett. 73: 21 (1980).Google Scholar
  65. 65.
    G. C. Schatz, A quasiclassical trajectory study of reagent vibrational excitation effects in the OH + H2 → H2O + H reaction, J. Chem. Phys. 74: 1133 (1981).Google Scholar
  66. 66.
    G. C. Schatz, Collisional energy transfer as a probe of ergodicity in molecular vibrational motions, Chem. Phys. Lett. 67: 248 (1979).Google Scholar
  67. 67.
    W. H. Miller and T. F. George, Semiclassical theory of electronic transitions in low energy atomic and molecular collisions involving several nuclear degrees of freedom, J. Chem. Phys. 56: 5637 (1972).Google Scholar
  68. 68.
    J. C. Tully and R. K. Preston, Trajectory surface hopping approach to nonadiabatic molecular collisions: The reaction of H+ with D2, J. Chem. Phys. 55: 562 (1971).Google Scholar
  69. 69.
    W. H. Miller and C. W. McCurdy, Classical trajectory model for electronically nonadiabatic collision phenomena: A classical analog for electronic degrees of freedom, J. Chem. Phys. 69: 5163 (1978).Google Scholar
  70. 70.
    H. D. Meyer and W. H. Miller, Analysis and extension of some recently proposed classical models for electronic degrees of freedom, J. Chem. Phys. 72: 2272 (1980).Google Scholar
  71. 71.
    H. D. Meyer and W. H. Miller, A classical analog for electronic degrees of freedom in nonadiabatic collision processes, J. Chem. Phys. 70: 3214 (1979).Google Scholar
  72. 72.
    H. D. Meyer and W. H. Miller, Classical models for electronic degrees of freedom: Derivation via spin analogy and application to F* + H2 → F + H2, J. Chem. Phys. 71: 2156 (1979).Google Scholar
  73. 73.
    S. M. Hornstein and W. H. Miller, Modified classical S matrix for tunneling in collinear H + H2 reaction, J. Chem. Phys. 61: 745 (1974).Google Scholar
  74. 74.
    J. D. Doll, T. F. George, and W. H. Miller, Complex-valued classical trajectories for reactive tunneling in three dimensional collisions of H with H2, J. Chem. Phys. 58: 1343 (1973).Google Scholar
  75. 75.
    D. G. Truhlar and A. Kuppermann, Exact and approximate quantum mechanical reaction probabilities and rate constants for the collinear H + H2 reaction, J. Chem. Phys. 56: 2232 (1972).Google Scholar
  76. 76.
    B. C. Garrett, D, G. Truhlar, R. S. Grev, and A. W. Magnuson, Improved treatment of threshold contributions in variational transition state theory, J. Phys. Chem. 84: 1730 (1980).Google Scholar
  77. 77.
    B. C. Garrett and D. G. Truhlar, Reliable Ab initio calculation of a chemical reaction rate and a kinetic isotope effect: H + H2 and 2H + 2H2, Proc. Natl. Acad. Sci. USA 76: 4755 (1979).Google Scholar
  78. 78.
    R. A. Marcus and M. E. Coltrin, A new tunneling path for reactions such as H + H2 → H2 + H, J. Chem. Phys. 67: 2609 (1977).Google Scholar
  79. 79.
    R. A. Marcus, Vibrational nonadiabaticity and tunneling effects in transition state theory, J. Phys. Chem. 83: 204 (1979).Google Scholar
  80. 80.
    R. I. Altkorn and G. C. Schatz, A method for determining semi-classical tunneling probabilities in atom-diatom reactions, J. Chem. Phys. 72: 3337 (1980).Google Scholar
  81. 81.
    W. H. Miller, N. C. Handy, and J. E. Adams, Reaction path Hamiltonian for polyatomic molecules, J. Chem. Phys. 72: 99 (1980).Google Scholar
  82. 82.
    P. Pechukas and E. Pollak, Trapped trajectories at the boundaries of reactivity bands in molecular collisions, J. Chem. Phys. 67: 5976 (1977).Google Scholar
  83. 83.
    E. Pollak and P. Pechukas, Transition states, trapped trajectories, and classical bound states embedded in the continuum, J. Chem. Phys. 69: 1218 (1978).Google Scholar
  84. 84.
    P. Pechukas and E. Pollak, Classical transition state theory is exact if the transition state is unique, J. Chem. Phys. 71: 2062 (1979).Google Scholar
  85. 85.
    B. C. Garrett and D. G. Truhlar, Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules, J. Phys. Chem. 83: 1079 (1979).Google Scholar
  86. 85.
    B. C. Garrett and D. G. Truhlar, Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules, J. Phys. Chem. 84: 682(E) (1980).Google Scholar
  87. 86.
    B. C. Garrett, D. G. Truhlar, R. S. Grev, A. W. Magnuson, and J. N. L. Connor, Variational transition state theory, vibrationally adiabatic transmission coefficients, and the unified statistical model tested against accurate quantum rate constants for collinear F + H2, H + F2, and isotopic analogs, J. Chem. Phys. 73: 1721 (1980).Google Scholar
  88. 87.
    A. A. Westenberg and N. deHaas, Atom-molecule kinetics using ESR detection. III. Results for O + D2 → OD + D and theoretical comparison with O + H2 → OH + H, J. Chem. Phys. 47: 4241 (1967).Google Scholar
  89. 88.
    B. R. Johnson and N. W. Winter, Classical trajectory study of the effect of vibrational energy on the reaction of molecular hydrogen with atomic oxygen, J. Chem. Phys. 66: 4116 (1977).Google Scholar
  90. 89.
    P. A. Whitlock, J. T. Muckerman, and E. P. Fisher, “Theoretical Investigations of the Energetics and Dynamics of the Reactions of O(3P, 1D) + H2 and C(1D) + H2”, technical report, Research Institute for Engineering Sciences, Wayne State University, Detroit (1976).Google Scholar
  91. 90.
    R. E. Howard, A. D. McLean, and W. A. Lester, Extended basis first-order CI study of the 1A′, 3A″, 1A″, and B1A′ potential energy surfaces of the \(O(^{3}P, ^{1}D)+H_{2}(^{1}\sum_{g}^{+})\) reaction, J. Chem. Phys. 71: 2412 (1979).Google Scholar
  92. 91.
    S. P. Walch, T. H. Dunning, R. C. Raffenetti, and F. W. Bobrowicz, A theoretical study of the potential energy surface for O(3P) + H2, J. Chem. Phys. 72: 406 (1980).Google Scholar
  93. 92.
    R. Schinke and W. A. Lester, Trajectory study of the O(3P) + H2(v,j) reaction on a fitted Ab initio surface, J. Chem. Phys. 70: 4893 (1979).Google Scholar
  94. 93.
    S. P. Walch, A. F. Wagner, T. H. Dunning, and G. C. Schatz, Theoretical studies of the O + H2 reaction, J. Chem. Phys. 72: 2894 (1980).Google Scholar
  95. 94.
    G. Dixon-Lewis and D. J. Williams, The oxidation of hydrogen and carbon monoxide, Comp. Chem. Kinetics 17: 1 (1977).Google Scholar
  96. 95.
    B. C. Garrett and D. G. Truhlar, Importance of quartic anharmonicity for bending partition functions In transition state theory, J. Phys. Chem. 83: 1915 (1979).Google Scholar
  97. 96.
    D. C. Clary, J. N. L. Connor, and C. J. Edge, Quantum and quasi-classical study of the collinear reaction O(3P) + H2 → OH + H using a LEPS and fitted Ab initio potential energy surface, Chem. Phys. Lett. 68: 154 (1979).Google Scholar
  98. 97.
    E. B. Gordon, B. I. Ivanov, A. P. Perminov, V. E. Balalaev, A. V. Ponomarev, and V. V. Filatov, Measurement of rate constants of hydrogen atom exchange with vibrationally excited H2, HD, and D2 molecules, Chem. Phys. Lett. 58: 425 (1978).Google Scholar
  99. 98.
    R. F. Heidner and J. V. V. Kasper, An experimental rate constant for H + H2(v″=l) → H + H2(v′=0), Chem. Phys. Lett. 15: 179 (1972).Google Scholar
  100. 99.
    M. Kneba, U. Wellhausen, and J. Wolfrum. Reactions of molecules In defined vibrational states VII. Absolute rate determination for the reaction of D-atoms with vibrationally excited H2-molecules, Ber. Bunsenges. Phys. Chem. 83: 940 (1979).Google Scholar
  101. 100.
    W. R. Schultz and D. J. LeRoy, Kinetics of the reactions H + p-H2 = o-H2 + H, J. Chem. Phys. 42: 3869 (1965).Google Scholar
  102. 101.
    D. N. Mitchell and D. J. LeRoy, Rate constants for the D + H2 = DH + H reaction at low temperatures using ESR detection, J. Chem. Phys. 58: 3449 (1973).Google Scholar
  103. 102.
    C. B. Moore and I. W. M. Smith, Chemical reactions of vibrationally excited molecules, Faraday Disc. Chem. Soc. 67: 146 (1979).Google Scholar
  104. 103.
    B. Liu, Ab initio potential energy surface for linear H3, J. Chem. Phys. 58: 1924 (1973).Google Scholar
  105. 104.
    P. Siegbahn and B. Liu, An accurate three-dimensional potential energy surface for H3, J. Chem. Phys. 68: 2457 (1978).Google Scholar
  106. 105.
    D. G. Truhlar and C. J. Horowitz, Functional representation of Liu and Siegbahn’s accurate Ab initio potential energy calculations, J. Chem. Phys. 68: 2466 (1978).Google Scholar
  107. D. G. Truhlar and C. J. Horowitz, Functional representation of Liu and Siegbahn’s accurate Ab initio potential energy calculations, J. Chem. Phys. 71: 1514(E) (1979).Google Scholar
  108. 106.
    R. N. Porter and M. Karplus, Potential energy surface for H3, J. Chem. Phys. 40: 1105 (1964).Google Scholar
  109. 107.
    A. C. Yates and W. A. Lester, A new H3 potential surface and its implications for chemical reaction, Chem. Phys. Lett. 24: 305 (1974).Google Scholar
  110. 108.
    H. R. Mayne, Quasiclassical trajectory calculations for H + H2(v=l) on a new potential energy surface, Chem. Phys. Lett. 66: 487 (1979).Google Scholar
  111. 109.
    H. R. Mayne and J. P. Toennies, Quasiclassical cross sections for the H + H2(0,0) → H + H2 reaction. Comparison of the Siegbahn-Liu-Truhlar-Horowitz and Porter-Karplus potential surfaces, J. Chem. Phys. 70: 5314 (1979).Google Scholar
  112. 110.
    M. Karplus and I. Wang, unpublished, cited in reference 98.Google Scholar
  113. 111.
    N. C. Blais and D. G. Truhlar, private communication.Google Scholar
  114. 112.
    V. I. Osherov, V. G. Ushakov, and L. A. Lomakin, The exchange reaction H2(v=1) + H = H + H2, Chem. Phys. Lett. 55: 513 (1978).Google Scholar
  115. 113.
    I. W. M. Smith, Vibrational relaxation in atom exchange reactions: A classical trajectory study of H + H2(v) and D + D2(v), Chem. Phys. Lett. 47: 219 (1977).Google Scholar
  116. 114.
    J. M. Bowman and K. T. Lee, Sudden rotation calculations of the H + H2(v=1,j=0) reaction, Chem. Phys. Lett. 64: 291 (1979).Google Scholar
  117. 115.
    J. C. Sun, B. H. Choi, R. T. Poe, and K. T. Tang, Quantum theory of D + H2 rearrangement collision: Effects of vibrational excitation, Phys. Rev. Lett. 44: 1211 (1980).Google Scholar
  118. 116.
    M. J. Redmon, Recent results from three-dimensional quantum reactive scattering theory, Int. J. Quantum Chem. Symp. 13: 559 (1979).Google Scholar
  119. 117.
    R. E. Wyatt, Quantum mechanics of neutral atom-diatomic molecule reactions, in: “State to State Chemistry”, P. R. Brooks and E. F. Hayes, eds., ACS Symposium Series, No. 56, Washington, D.C. (1977), p. 185.Google Scholar
  120. 118.
    M. J. Redmon and R. E. Wyatt, private communication.Google Scholar
  121. 119.
    B. C. Garrett and D. G. Truhlar, Generalized transition state theory calculations for the reactions D + H2 and H + D2 using an accurate potential energy surface: Explanation of the kinetic isotope effect, J. Chem. Phys. 72: 3460 (1980).Google Scholar
  122. 120.
    J. E. Spencer, H. Endo, and G. P. Glass, Reactions of vibrationally excited OH, Sixteenth Symp. (Int.) on Combustion, The Combustion Institute (1976), p. 829.Google Scholar
  123. 121.
    G. C. Light and J. H. Matsumoto, The effect of vibrational excitation in the reactions of OH with H2, Chem. Phys. Lett. 58: 578 (1978).Google Scholar
  124. 122.
    S. P. Walch and T. H. Dunning, A theoretical study of the potential surface for OH + H2, Chem. Phys. Lett. 72: 1303 (1980).Google Scholar
  125. 123.
    G. C. Schatz and S. P. Walch, An Ab initio calculation of the rate constant for the OH + H2 → H2O + H reaction, J. Chem. Phys. 72: 776 (1980).Google Scholar
  126. 124.
    S. Chapman, A theoretical study of the effects of vibration on the reaction O3 + NO → O2 + NO2, J. Chem. Phys. 74: 1001 (1981).Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • George C. Schatz
    • 1
  1. 1.Department of ChemistryNorthwestern UniversityEvanstonUSA

Personalised recommendations