Potential Energy Characteristics for Chemical Reactions

  • Keiji Morokuma
  • Shigeki Kato


Ab initio molecular orbital (MO) methods can provide accurate descriptions of potential energy surfaces for chemical reactions. For triatomic systems such as H3 and H2F extensive calculations of very accurate potential surfaces have been carried out. For systems having four atoms or more, however, the accomplishment so far has been rather limited. One of the reasons for this is that the full potential energy surface is a function of 3N-6 coordinates where N is the number of atoms, and this is too many degrees of freedom for the full surface to be mapped. Even to optimize the geometrical parameters for all the degrees of freedom to determine the reactant and saddle point geometries is very difficult. However, a revolution is taking place in the way quantum chemists probe a potential surface. It is based on the development of new theoretical methods and computer programs for analytically calculating the gradient of the energy with respect to the nuclear coordinates.1 Quantum chemists are now learning how to use this energy gradient, a concept more familiar in the context of collision theory, to study the characteristics of potential energy surfaces. In this review we will first summarize briefly how to calculate the energy gradient analytically. Then we will discuss methods of determining geometries, force constants, and normal vibrations for both equilibrium configurations and saddle points, and we will show several examples of such calculations we have recently carried out.


Saddle Point Potential Energy Surface Reaction Coordinate Intrinsic Reaction Coordinate Energy Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Pulay, Direct use of the gradient for investigating molecular energy surfaces, in: “Applications of Electronic Structure Theory”, H. F. Schaefer, ed., Plenum, New York (1977), p. 153, and references cited therein.CrossRefGoogle Scholar
  2. 2.
    A. Komornicki, K. Ishida, K. Morokuma, R. Ditchfield, and M. Conrad, Efficient determination and characterization of transition states using Ab initio methods, Chem. Phys. Lett. 45: 595 (1977); K. Morokuma, S. Kato, K. Kitaura, I. Ohmine, S, Sakai, and S. Obara, IMSPACK, IMS Computer Center Library Program No. 0372 (1980), consisting of GAUSSIAN70, HONDO, and its own gradient, optimization, and other routines.CrossRefGoogle Scholar
  3. 3.
    S. Kato and K. Morokuma, Energy gradient in a multiconfigurational SCF formalism and its application to geometry optimization of trimethylene diradicals, Chem. Phys. Lett. 65: 19 (1979).CrossRefGoogle Scholar
  4. 4.
    J. D. Goddard, N. C. Handy, and H. F. Schaefer, Gradient techniques for open-shell restricted Hartree-Fock and multiconfiguration self-consistent-field methods, J. Chem. Phys. 71: 1525 (1979).CrossRefGoogle Scholar
  5. 5.
    B. R. Brooks, W. D. Laidig, P. Saxe, J. D. Goddard, Y. Yamaguchi, and H. F. Schaefer, Analytic gradients from correlated wave-functions via the two-particle density matrix and the unitary group approach, J. Chem. Phys. 72: 4652 (1980).CrossRefGoogle Scholar
  6. 6.
    R. Krishnan, H. B. Schlegel, and J. A. Pople, Derivative studies in configuration-interaction theory, J. Chem. Phys. 72: 4654 (1980).CrossRefGoogle Scholar
  7. 7.
    J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, Derivative studies in Hartree-Fock and Møller-Plesset theories, Int. J. Quantum Chem. Symp. 13: 225 (1979).Google Scholar
  8. 8.
    J. W. McIver, Jr. and A. Komornicki, Rapid geometry optimization for semiempirical molecular orbital methods, Chem. Phys. Lett. 10: 303 (1971).CrossRefGoogle Scholar
  9. 9.
    R. A. Whiteside, J. S. Binkley, R. Krishnan, D. J. DeFrees, H. B. Schlegel, and J. A. Pople, Carnegie-Mellon Quantum Chemistry Archive, 1980.Google Scholar
  10. 10.
    P. Pulay, G. Fogarasi, F. Pang, and J. E. Boggs, Systematic Ab initio gradient calculation of molecular geometries, force constants, and dipole moment derivatives, J. Amer. Chem. Soc. 101: 2550 (1979).CrossRefGoogle Scholar
  11. 11.
    S. Iwata, Reliability of Ab initio calculations, in: “Quantum Chemistry Data Base Report No. l”, K. Ohno, ed., Hokkaido University, Sapporo, Japan, 1978, p. 14.Google Scholar
  12. 12.
    Y. Sugawara, Y. Hamada, A. Y. Hirakawa, M. Tsuboi, S. Kato, and K. Morokuma, Ab initio MO calculation of force constants and dipole derivatives for formamide, Chem. Phys. 50: 105 (1980).CrossRefGoogle Scholar
  13. 13.
    Y. Nishimura, M. Tsuboi, S. Kato, and K. Morokuma, Vibrational modes in the uracil molecule from an Ab initio MO calculation, J. Amer. Chem. Soc, in press.Google Scholar
  14. 14.
    J. W. McIver, Jr. and A. Komornicki, Structure of transition states in organic reactions. General theory and its application to the cyclobutene-butadiene isomerization using a semiempirical molecular orbital method, J. Amer. Chem. Soc. 94: 2615 (1972).Google Scholar
  15. 15.
    S. Nagase, N. K. Ray, and K. Morokuma, The reaction mechanism of hydroboration. An Ab initio MO study on the C2H4 + BH3 reaction, J. Amer. Chem. Soc. 102: 4536 (1980).CrossRefGoogle Scholar
  16. 16.
    E. R. Davidson and D. W. Silver, Size consistency in the dilute helium gas electronic structure, Chem. Phys. Lett. 52: 403 (1977).CrossRefGoogle Scholar
  17. 17.
    L. B. Harding, H. B. Schlegel, R. Krishnan, and J. A. Pople, A Møller-Plesset study of the H4CO potential energy surface, J. Phys. Chem., in press.Google Scholar
  18. 18.
    J. D. Goddard and H. F. Schaefer, The photodissociation of formaldehyde: Potential energy surface features, J. Chem. Phys. 70: 5117 (1979).CrossRefGoogle Scholar
  19. 19.
    S. Nagase, T. Fueno, and K. Morokuma, An Ab initio approach to organic reaction rates. Kinetic isotope effects in the reaction H + C2H4 + C2H5, J. Amer. Chem. Soc. 101: 5840 (1979).Google Scholar
  20. 20.
    S. Kato and K. Morokuma, Potential energy characteristics and energy partitioning in chemical reactions. An Ab initio MO study of H2CCH2F → H2CCHF + H reaction, J. Chem. Phys. 72: 206 (1980).CrossRefGoogle Scholar
  21. 21.
    K. Fukui, S. Kato, and H. Fujimoto, Constituent analysis of the potential gradient along a reaction coordinate. Method and an application to CH4 + T reaction, J. Amer. Chem. Soc. 97: 1 (1975).CrossRefGoogle Scholar
  22. 22.
    I. Shavitt, The tunnel effect correction to the rates of reactions with parabolic and Eckart barriers, University of Wisconsin Theoretical Chemistry Laboratory Report WIS-AEC-23, Madison, 1959.Google Scholar
  23. D. G. Truhlar and A. Kuppermann, Exact tunneling calculations, J. Amer. Chem. Soc. 93: 1840 (1971).CrossRefGoogle Scholar
  24. 23.
    H. F. Schaefer, Potential beneath the surface, Chem. Britain 11: 227 (1975).Google Scholar
  25. 24.
    K. Ishida, K. Morokuma, and A. Komornicki, The intrinsic reaction coordinate. An Ab initio calculation for HNC → HCN and H + CH4 → CH4 + H, J. Chem. Phys. 66: 2153 (1977).CrossRefGoogle Scholar
  26. 25.
    S. Kato and K. Morokuma, Potential energy characteristics and energy partitioning in chemical reactions: Ab initio MO study of four-centered elimination reaction CH3CH2F → CH2=CH2 + HF, J. Chem. Phys. 73: 3900 (1980).CrossRefGoogle Scholar
  27. 26.
    W. H. Miller, N. C. Handy, and J. E. Adams, Reaction path Hamiltonian for polyatomic molecules, J. Chem. Phys. 72: 99 (1980).CrossRefGoogle Scholar
  28. 27.
    R. A. Marcus, Analytic mechanics of chemical reactions. III. Natural collision coordinates, J. Chem. Phys. 49: 2610 (1968).CrossRefGoogle Scholar
  29. G. L. Hofacker and R. D. Levine, The evoluation of entropy along the reaction path in an atom-diatom collision, Chem. Phys. Lett. 33: 404 (1975).CrossRefGoogle Scholar
  30. 28.
    D. G. Truhlar and D. A. Dixon, Direct-mode chemical reactions: Classical theories, in: “Atom-Molecule Collision Theory: A Guide for the Experimentalist”, R. B. Bernstein, ed., Plenum, New York (1979), p. 595.Google Scholar
  31. 29.
    K. Morokuma, S. Kato, and K. Hirao, Substitution effect on formaldehyde photochemistry. Potential surface characteristics of HFCO, J. Chem. Phys. 72: 6800 (1980).CrossRefGoogle Scholar
  32. 30.
    S. Kato and K. Morokuma, presented at the 7th Canadian Conference on Theroetical Chemistry, June 1980, Banff, Alta., Canada.Google Scholar
  33. 31.
    W. H. Miller, Tunneling corrections to unimolecular rate constants, with application to formaldehyde, J. Amer. Chem. Soc. 101: 6810 (1979).CrossRefGoogle Scholar
  34. 32.
    S. K. Gray, W. H. Miller, Y. Yamaguchi, and H. F. Schaefer, Tunneling in unimolecular decomposition of formaldehyde. A more quantitative study, J. Amer. Chem. Soc, in press.Google Scholar
  35. 33.
    S. Kato and K. Morokuma, A theoretical study of unimolecular reactions of vinylfluoride. Potential surface characteristics and their mechanistic implications, J. Chem. Phys., in press.Google Scholar
  36. 34.
    I. S. Y. Wang and M. Karplus, Dynamics of organic reactions, J. Amer. Chem. Soc. 95: 8160 (1973).CrossRefGoogle Scholar
  37. A. Warshel and M. Karplus, Semiclassical trajectory approach to photoisomerization, Chem. Phys. Lett. 32: 11 (1975).CrossRefGoogle Scholar
  38. 35.
    I. Ohmine and K. Morokuma, Photoisomerization of polyenes; reaction coordinate and trajectory in triplet mechanism, J. Chem. Phys. 74: 564 (1981).CrossRefGoogle Scholar
  39. 36.
    I. Ohmine and K. Morokuma, Photoisomerization of polyenes; potential energy surfaces and normal mode analysis, J. Chem. Phys. 73: 1907 (1980).CrossRefGoogle Scholar
  40. 37.
    S. Kato and K. Morokuma, unpublished work.Google Scholar
  41. 38.
    L. R. Kahn, P. Baybutt, and D. G. Truhlar, Ab initio effective core potentials: Reduction of all-electron molecular structure calculations to calculations involving only valence electrons, J. Chem. Phys. 65: 3826 (1976).CrossRefGoogle Scholar
  42. 39.
    K. Kitaura, S. Obara, and K. Morokuma, Energy gradient with effective core potential approximation in the Ab initio MO method and its application to the structure of Pt(H)2(PH3)2, Chem. Phys. Lett. 77: 452 (1981).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Keiji Morokuma
    • 1
  • Shigeki Kato
    • 1
  1. 1.Institute for Molecular ScienceMyodaiji, Okazaki 444Japan

Personalised recommendations