Skip to main content

Abstract

The chemical literature abounds with questions concerning the dynamics of unimolecular reactions. This has been brought about in part by the rapid development of laser and other experimental technologies which have enhanced the ability to probe unimolecular reactions at a fundamental level. Continual advancements have also been made in developing theoretical methods. Classical mechanical techniques have been applied to complex unimolecular reactions using realistic potential energy surfaces and important strides have been made in developing semiclassical methods applicable to intramolecular dynamics of highly excited polyatomic molecules. This theoretical effort has benefited greatly from the constant improvement in computer technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. A. Rice, Some comments on the dynamics of primary photochemical processes, in: “Excited States”, Vol. 2, E. C. Lim, ed., Academic, New York (1975), p. 111.

    Google Scholar 

  2. W. L. Hase, Dynamics of unimolecular reactions, in “Modern Theoretical Chemistry”, Vol. 2, “Dynamics of Molecular Collisions: Part B”, W. H. Miller, ed., Plenum, New York (1976), p. 121.

    Google Scholar 

  3. M. Quack and J. Troe, Unimolecular reactions and energy transfer of highly excited molecules Specialist Periodical Reports Chem. Soc., Gas Kinetics and Energy Transfer 2: 175 (1977).

    Article  CAS  Google Scholar 

  4. J. D. McDonald, Creation and disposal of vibrational energy in polyatomic molecules, Annu. Rev. Phys. Chem. 30: 29 (1979).

    Article  CAS  Google Scholar 

  5. W. J. Chesnavich and M. T. Bowers, Statistical methods in reaction dynamics, in: “Gas Phase Ion Chemistry”, Vol. 1, M. T. Bowers, ed., Academic, New York (1979), p. 119.

    Google Scholar 

  6. I. Oref and B. S. Rabinovitch, Do highly excited reactive polyatomic molecules behave ergodically, Acc. Chem. Res. 12: 166 (1979).

    Article  CAS  Google Scholar 

  7. B. E. Holmes and D. W. Setser, Energy disposal in chemical reactions, in: “Physical Chemistry of Fast Reactions”, Vol. 2, Plenum, New York (1980), p. 83.

    Google Scholar 

  8. J. P. Robinson and K. A. Holbrook, “Unimolecular Reactions”, Wiley Interscience, New York (1972).

    Google Scholar 

  9. W. Forst, “Theory of Unimolecular Reactions”, Academic, New York (1973).

    Google Scholar 

  10. D. L. Bunker and M. Pattengill, Monte Carlo calculations. VI. A reevaluation of the RRKM theory of unimolecular reaction rates, J. Chem. Phys. 48: 772 (1968).

    Article  CAS  Google Scholar 

  11. W. H. Wong and R. A. Marcus, Concept of minimum state density in the activated complex theory of bimolecular reactions, J. Chem. Phys. 55: 5625 (1971).

    Article  CAS  Google Scholar 

  12. W. H. Wong, Remarks on the concept of minimum state density in the activated complex theory, Can. J. Chem. 50: 3386 (1972).

    Article  CAS  Google Scholar 

  13. M. Quack and J. Troe, Specific rate constants of unimolecular processes II. Adiabatic channel model, Ber. Bunsenges. Phys. Chem. 78: 240 (1974).

    Article  CAS  Google Scholar 

  14. W. L. Hase, The criterion of minimum state density in unimolecular rate theory. An application to ethane dissociation, J. Chem. Phys. 64: 2442 (1976).

    Article  CAS  Google Scholar 

  15. M. Quack and J. Troe, Unimolecular processes V: Maximum free energy for the high pressure limit of dissociation reactions, Ber. Bunsenges. Phys. Chem. 81: 329 (1977).

    Article  CAS  Google Scholar 

  16. B. C. Garrett and D. G. Truhlar, Criterion of minimum state density in the transition state theory of bimolecular reactions, J. Chem. Phys. 70: 1593 (1979).

    Article  CAS  Google Scholar 

  17. J. C. Polanyi, Some concepts In reaction dynamics, Acc. Chem. Res. 5: 161 (1971).

    Article  Google Scholar 

  18. D. L. Bunker, Classical trajectory methods, Methods Comput. Phys. 10: 287 (1971).

    CAS  Google Scholar 

  19. J. C. Polanyi and J. L. Schreiber, The dynamics of bimolecular reactions, in: “Physical Chemistry: An Advanced Treatise”, Vol. VIA, “Kinetics of Gas Reactions”, W. Jost, ed., Academic, New York (1974), p. 383.

    Google Scholar 

  20. T. Valencich and D. L. Bunker, Trajectory studies of hot atom reactions. II. An unrestricted potential for CH5, J. Chem. Phys. 61: 21 (1974).

    Article  CAS  Google Scholar 

  21. D. L. Bunker, Simple kinetic models from Arrhenius to the computer, Acc. Chem. Res. 7: 195 (1974).

    Article  CAS  Google Scholar 

  22. J. D. Goddard and H. F. Schaefer III, The photodissociation of formaldehyde: Potential energy surface features, J. Chem. Phys. 70: 5117 (1979).

    Article  CAS  Google Scholar 

  23. L. T. Redmon, G. D. Purvis III, and R. J. Bartlett, Correlation effects in the isomeric cyanides: HNC ↔ HCN, LiNC ↔ LiCN, and BNC ↔ BCN, J. Chem. Phys. 72: 986 (1980).

    Article  CAS  Google Scholar 

  24. L. T. Redmon, G. D. Purvis, and R. J. Bartlett, The unimolecular isomerization of methyl isocyanide to methyl cyanide (acetonitrile), J. Chem. Phys. 69: 5386 (1978).

    Article  CAS  Google Scholar 

  25. P. Saxe, Y. Yamaguchi, P. Pulay, and H. F. Schaefer III, Transition state vibrational analysis for the methyl isocyanide rearrangement, CH3NC → CH3CN, J. Amer. Chem. Soc. 102: 3718 (1980).

    Article  CAS  Google Scholar 

  26. D. T. Clark, I. W. Scanlon, and J. C. Walton, A note on the transition state of radical addition reactions, Chem. Phys. Lett. 55: 102 (1978).

    Article  CAS  Google Scholar 

  27. W. L. Hase, G. Mrowka, R. J. Brudzynski, and C. S. Sloane, An analytic function describing the H + C2H4 ⇄ C2H5 potential energy surface, J. Chem. Phys. 69: 3548 (1978).

    Article  CAS  Google Scholar 

  28. S. Kato and K. Morokuma, Potential energy characteristics and energy partitioning in chemical reactions: Ab initio MO study of H2CCH2F → H2CCHF + H reaction, J. Chem. Phys. 72: 206 (1980).

    Article  CAS  Google Scholar 

  29. R. E. Howard, A. D. McLean, and W. A. Lester, Jr., Extended basis first-order CI study of the 1A′, 3A″, 1A″, and B 1A′ potential energy surfaces of the O(3P, 1D) + H2(1g +) reaction, J. Chem. Phys. 71: 2412 (1979).

    Article  CAS  Google Scholar 

  30. G. F. Adams, G. D. Bent, G. D. Purvis, and R. J. Bartlett, The electronic study of the formyl radical HCO, J. Chem. Phys. 71: 3697 (1979).

    Article  CAS  Google Scholar 

  31. M. M. L. Chan and H. F. Schaefer III, Potential energy surface for the Li + HF → LiF + H reaction, J. Chem. Phys. 72: 4376 (1980).

    Article  Google Scholar 

  32. J. N. Murrell, Potential energy surfaces for studying the reactions and molecular dynamics of small polyatomic molecules, Specialist Periodical Reports Chem. Soc., Gas Kinetics and Energy Transfer 3: 200 (1978).

    Article  CAS  Google Scholar 

  33. R. Schinke and W. A. Lester, Jr., Trajectory studies of O + H2 reactions on fitted Ab initio surfaces. II. Singlet case, J. Chem. Phys. 72: 3754 (1980).

    Article  CAS  Google Scholar 

  34. D. L. Bunker and W. L. Hase, On non-RRKM unimolecular kinetics: Molecules in general, and CH3NC in particular, J. Chem. Phys. 59: 4621 (1973).

    Article  CAS  Google Scholar 

  35. D. L. Bunker and W. L. Hase, On non-RRKM unimolecular kinetics: Molecules in general, and CH3NC in particular, J. Chem. Phys. 69: 4711(E) (1978).

    Google Scholar 

  36. E. R. Grant and D. L. Bunker, Dynamical effects in unimolecular decomposition: A classical trajectory study of the dissociation of C2H6, J. Chem. Phys. 68: 628 (1978).

    Article  CAS  Google Scholar 

  37. A. F. Wagner, A. C. Wahl, A. M. Karo, and R. Krejci, Classical inelastic scattering in Li + H2: A comparison of different potential energy surfaces, J. Chem. Phys. 69: 3756 (1978).

    Article  CAS  Google Scholar 

  38. R. A. Marcus, The theoretical approach, Faraday Disc. Chem. Soc. 55: 9 (1973).

    Article  CAS  Google Scholar 

  39. W. H. Miller, Classical-limit quantum mechanics and the theory of molecular collisions, Advan. Chem. Phys. 25: 69 (1974).

    Article  Google Scholar 

  40. W. D. Noid, M. L. Koszykowski, and R. A. Marcus, Semiclassical calculation of bound states in multidimensional systems with Fermi resonance, J. Chem. Phys. 71: 2864 (1979).

    Article  CAS  Google Scholar 

  41. R. M. Stratt, N. C. Handy, and W. H. Miller, On the quantum mechanical implications of classical ergodicity, J. Chem. Phys. 71: 3311 (1979).

    Article  CAS  Google Scholar 

  42. E. J. Heller, Time-dependent approach to semiclassical dynamics, J. Chem. Phys. 62: 1544 (1975).

    Article  CAS  Google Scholar 

  43. E. J. Heller, E. B. Stechel, and M. J. Davis, Molecular spectra, Fermi resonances, and classical motion: Example of CO2, J. Chem. Phys. 71: 4759 (1979).

    Article  CAS  Google Scholar 

  44. E. J. Heller, Quantum effects in intramolecular energy transfer, Chem. Phys. Lett. 60: 338 (1979).

    Article  CAS  Google Scholar 

  45. K. G. Kay, Numerical study of intramolecular vibrational energy transfer: Quantal, classical, and statistical behavior, J. Chem. Phys. 72: 5955 (1980).

    Article  CAS  Google Scholar 

  46. R. N. Porter and L. M. Raff, Classical trajectory methods in molecular collisions, in: “Modern Theoretical Chemistry”, Vol. 2, “Dynamics of Molecular Collisions, Part B”, W. H. Miller, ed., Plenum, New York (1976), p. 1.

    Google Scholar 

  47. D. G. Truhlar and J. T. Muckerman, Reactive scattering cross sections III: Quasiclassical and semiclassical methods, in: “Atom-Molecule Collision Theory: A Guide for the Experimentalist”, R. B. Bernstein, ed., Plenum, New York (1979), p. 505.

    Chapter  Google Scholar 

  48. G. C. Schatz, A quasiclassical trajectory study of collisional excitation in Li+ + CO2, J. Chem. Phys. 72: 3929 (1980).

    Article  CAS  Google Scholar 

  49. S. Chapman and D. L. Bunker, An exploratory study of reactant vibrational effects in CH3 + H2 and its isotopic variants, J. Chem. Phys. 62: 2890 (1975).

    Article  CAS  Google Scholar 

  50. D. L. Bunker, Monte Carlo calculation of triatomic dissociation rates. I. N2O and O3, J. Chem. Phys. 37: 393 (1962).

    Article  CAS  Google Scholar 

  51. W. L. Hase and D. G. Buckowski, Monte Carlo sampling of a micro-canonical ensemble of classical harmonic oscillations, Chem. Phys. Lett. 74: 284 (1980).

    Article  CAS  Google Scholar 

  52. R. J. Wolf and W. L. Hase, Trajectory studies of model H-C-C → H + C=C dissociation. I. Random vibrational excitation, J. Chem. Phys. 72: 316 (1980).

    Article  CAS  Google Scholar 

  53. D. L. Bunker and S. A. Jayich, Trajectory studies of energy transfer: CH3NC with He, Xe, H2 and N2, Chem. Phys. 13: 129 (1976).

    Article  CAS  Google Scholar 

  54. R. C. Baetzold and D. J. Wilson, Classical unimolecular rate theory. II. Effect of the distribution of initial conditions, J. Phys. Chem. 68: 3141 (1964).

    Article  CAS  Google Scholar 

  55. W. L. Hase, R. L. Johnson, and J. W. Simons, The decomposition of chemically activated n-butane, isopentane, neohexane, and n-pentane and the correlation of their decomposition rates with radical recombinations rates, Int. J. Chem. Kinet. 4: 1 (1972).

    Article  CAS  Google Scholar 

  56. P. J. Marcoux and D. W. Setser, Vibrational energy transfer probabilities of highly vibrationally excited 1,1-trifluoro-ethane, J. Phys. Chem. 82: 97 (1978).

    Article  CAS  Google Scholar 

  57. B. E. Holmes and D. W. Setser, Energy disposal by the four-centered unimolecular hydrogen chloride elimination reaction, J. Phys. Chem. 82: 2461 (1978).

    Article  CAS  Google Scholar 

  58. Y. T. Lee, Crossed molecular beam studies and dynamics of decomposition of chemically activated radicals, Ber. Bunsenges. Phys. Chem. 78: 135 (1974).

    CAS  Google Scholar 

  59. G. M. McClelland and D. R. Herschbach, Symmetry properties of angular correlations for molecular collision complexes, J. Phys. Chem. 83: 1445 (1979).

    Article  CAS  Google Scholar 

  60. P. N. Clough, J. C. Polanyi, and R. T. Taguchi, Vibrational energy distribution in HF formed by elimination from activated CH3CF3 and CH2CF2, Can. J. Chem. 48: 2919 (1970).

    Article  CAS  Google Scholar 

  61. E. Cuellar, J. H. Parker, and G. C. Pimentel, Rotational chemical lasers from hydrogen fluoride elimination reactions, J. Chem. Phys. 61: 422 (1974).

    Article  CAS  Google Scholar 

  62. J. F. Durana and J. D. McDonald, Infrared chemiluminescence studies of chlorine substitution reactions with brominated unsaturated hydrocarbons, J. Chem. Phys. 64: 2518 (1976).

    Article  CAS  Google Scholar 

  63. K. Evans, D. Heller, S. A. Rice, and R. Scheps, Primary photochemical and photophysical processes in chloro-and bromo-acetylene, J. Chem. Soc. Faraday Trans. II 69: 856 (1973).

    Article  CAS  Google Scholar 

  64. J. C. Hsieh, C.-S. Huang, and E. C. Lim, Radiationless singlet deactivation in isolated large molecules. I. Naphthalene, naphthol, and naphthylamine, J. Chem. Phys. 60: 4345 (1974).

    Article  CAS  Google Scholar 

  65. C. A. Thayer, A. V. Pocius, and Y. T. Yardley, Radiationless decay in propynal: Dependence upon vibrational state, J. Chem. Phys. 62: 3712 (1975).

    Article  CAS  Google Scholar 

  66. P. A. Beyer, P. F. Zittel, and W. C. Lineberger, Relaxation in the 1Au state of glyoxal. I. Collision free lifetimes of single vibrational levels, J. Chem. Phys. 62: 4016 (1975).

    Article  CAS  Google Scholar 

  67. E. K. C. Lee, Laser photochemistry of selected vibronic and rotational states, Acc. Chem. Res. 10: 319 (1977).

    Article  CAS  Google Scholar 

  68. Y. Hirata and E. C. Lim, Intramolecular vibrational energy redistribution as revealed by excitation energy dependence of nonradiative decay rate: T1 → S0 intersystem crossing in acetophenone and 1-indanone, Chem. Phys. Lett. 71: 167 (1980).

    Article  CAS  Google Scholar 

  69. H. Hippler, K. Luther, J. Troe, and R. Walch, Ultraviolet-laser study of specific rate constants for unimolecular isomerization of substituted cycloheptatrienes, J. Chem. Phys. 68: 323 (1978).

    Article  CAS  Google Scholar 

  70. R. Naaman, D. M. Lubman, and R. N. Zare, Vibrational energy redistribution in glyoxal following internal conversion, J. Chem. Phys. 71: 4192 (1979).

    Article  CAS  Google Scholar 

  71. W. Braun and W. Tsang, Mechanism of alkyl halide photolysis by a pulsed CO2 TEA laser, Chem. Phys. Lett. 44: 354 (1976).

    Article  CAS  Google Scholar 

  72. D. M. Brenner, Infrared multiphoton-induced chemistry of ethyl vinyl ether: Dependence of branching ratio on laser pulse duration, Chem. Phys. Lett. 57: 357 (1978).

    Article  CAS  Google Scholar 

  73. R. B. Hall and A. Kaldor, Multiple IR photon laser induced reactions of cyclopropane, J. Chem. Phys. 70: 4027 (1979).

    Article  CAS  Google Scholar 

  74. S. E. Bialkowski and W. A. Guillory, The infrared multiphoton photochemistry of methanol, J. Chem. Phys. 67: 2061 (1977).

    Article  CAS  Google Scholar 

  75. P. A. Schulz, Aa. S. Sudbo, D. J. Krajnovich, H. S. Kwok, Y. R. Shen, and Y. T. Lee, Multiphoton dissociation of polyatomic molecules, Annu. Rev. Phys. Chem. 30: 379 (1979).

    Article  CAS  Google Scholar 

  76. J. C. Stephenson, S. E. Bialkowski, and D. S. King, Energy partitioning in CO2 laser induced multiphoton dissociations: Energy of X CF2 and X CFCI from CF2CFC1, J. Chem. Phys. 72: 1161 (1980).

    Article  CAS  Google Scholar 

  77. R. G. Bray and M. J. Berry, Intramolecular rate processes in highly vibrationally excited benzene, J. Chem. Phys. 71: 4909 (1979).

    Article  CAS  Google Scholar 

  78. K. V. Reddy and M. J. Berry, Intracavity CW dye laser photo-activation of unimolecular reactants: Isomerization of state-selected methyl isocyanide, Chem. Phys. Lett. 52: 111 (1977).

    Article  CAS  Google Scholar 

  79. K. V. Reddy and M. J. Berry, A nonstatistical unimolecular chemical reaction: Isomerization of state-selected allyl isocyanide, Chem. Phys. Lett. 66: 223 (1979).

    Article  CAS  Google Scholar 

  80. D. L. Bunker, “Theory of Elementary Gas Reaction Rates” Pergamon Press, New York (1966).

    Google Scholar 

  81. D. L. Bunker, Monte Carlo calculations. IV. Further studies of unimolecular dissociation, J. Chem. Phys. 40: 1946 (1964).

    Article  CAS  Google Scholar 

  82. E. Thiele and D. J. Wilson, Anharmonicity in unimolecular reactions, J. Chem. Phys, 35: 1256 (1961).

    Article  CAS  Google Scholar 

  83. H. C. Hung and D. J. Wilson, Anharmonic effects in unimolecular rate theory. Dynamics of a rotating anharmonic triatomic molecule, J. Chem. Phys. 38: 828 (1963).

    Article  CAS  Google Scholar 

  84. R. J. Harter, E. B. Alterman, and D. J. Wilson, Anharmonic effects in unimolecular rate theory. Vibrations and collisions of simple polyatomic systems, J. Chem. Phys. 40: 2137 (1964).

    Article  CAS  Google Scholar 

  85. R. G. Baetzold and D. J. Wilson, Classical unimolecular rate theory. III. Effect of initial conditions on lifetime distributions, J. Chem. Phys. 43: 4299 (1965).

    Article  CAS  Google Scholar 

  86. H. C. Hung, Rotational-vibrational energy transfer, Dynamics of a rotating anharmonic four-atom molecule, J. Chem. Phys. 57: 5202 (1972).

    Article  CAS  Google Scholar 

  87. H. H. Harris and D. L. Bunker, Methyl isocyanide is probably a non-RRKM molecule, Chem. Phys. Lett. 11: 433 (1971).

    Article  CAS  Google Scholar 

  88. P. Brumer and M. Karplus, Collision complex dynamics in alkali halide exchange reactions, Faraday Disc. Chem. Soc. 55: 80 (1973).

    Article  CAS  Google Scholar 

  89. K. S. Sorbie and J. N. Murrell, Theoretical study of the O(1D) + H2(1+ g) reactive quenching process. Mol. Phys. 31: 905 (1976).

    Article  CAS  Google Scholar 

  90. J. D. McDonald and R. A. Marcus, Classical trajectory study of internal energy distributions in unimolecular processes, J. Chem. Phys. 65: 2180 (1976).

    Article  CAS  Google Scholar 

  91. D. W. Noid, M. L. Koszykowski, R. A. Marcus, and J. D. McDonald, Classical trajectory study of infrared multiphoton photodissociation, Chem. Phys. Lett. 51: 540 (1977).

    Article  CAS  Google Scholar 

  92. W. L. Hase and D.-F. Feng, Classical trajectory study of the unimolecular decomposition of H-C=C1, H-C≡C-H, and C1-C≡C1, J. Chem. Phys. 61: 4690 (1974).

    Article  CAS  Google Scholar 

  93. W. L. Hase and D.-F. Feng, Trajectory studies of unimolecular processes. II. Dynamics of cloroacetylene dissociations, J. Chem. Phys. 64: 651 (1976).

    Article  CAS  Google Scholar 

  94. C. S. Sloane and W. L. Hase, On the dynamics of state selected unimolecular reactions: Chloroacetylene dissociation and pre-dissociation, J. Chem. Phys. 66: 1523 (1977).

    Article  CAS  Google Scholar 

  95. W. L. Hase, On the relationship between unimolecular lifetime and relative translational energy distributions, Chem. Phys. Lett. 67: 263 (1979).

    Article  CAS  Google Scholar 

  96. X. Chapuisat and Y. Jean, Dynamical study of mechanistic details in organic reactions II. An overall study of isomerizations of cyclopropane, J. Amer. Chem. Soc. 97: 6325 (1975).

    Article  CAS  Google Scholar 

  97. D. E. Carter, Translational energies from ionic fragmentation, J. Chem. Phys. 65: 2584 (1976).

    Article  CAS  Google Scholar 

  98. M. Sizun and S. Goursaud, A classical trajectory study of the fragmentation of CO2 2∑+ g, J. Chem. Phys. 71: 4042 (1979).

    Article  CAS  Google Scholar 

  99. J. Santamaria, D. L. Bunter, and E. R. Grant, Dynamical effects of mode specific excitation in unimolecular decomposition: A trajectory study of C2H6, Chem. Phys. Lett. 56: 170 (1978).

    Article  CAS  Google Scholar 

  100. J. W. Duff and P. Brumer, Exponentiating trajectories and statistical behavior: Three dimensional K + NaCl and H + ICl, J. Chem. Phys. 71: 2693 (1979).

    Article  CAS  Google Scholar 

  101. D. L. Bunker, K. R. Wright, W. L. Hase, and F. A. Houle, Exit-channel coupling effects in the unimolecular decomposition of triatomics, J. Phys. Chem. 83: 933 (1979).

    Article  CAS  Google Scholar 

  102. W. L. Hase, R. J. Wolf, and C. S. Sloane, Trajectory studies of the molecular dynamics of ethyl radical decomposition, J. Chem. Phys. 71: 2911 (1979).

    Article  CAS  Google Scholar 

  103. D. Poppe, Multiphoton absorption of SF5: A classical trajectory study, Chem. Phys. 45: 371 (1980).

    Article  CAS  Google Scholar 

  104. J. W. Brady, J. D. Doll, and D. L. Thompson, Cluster dynamics: A classical trajectory study of A + An ⇄ A* n+1, J. Chem. Phys. 71: 2467 (1979).

    Article  CAS  Google Scholar 

  105. S. B. Woodruff and D. L. Thompson, A quasiclassical study of vibrational predissociation of van der Waals molecules: Collinear He...I2(B3π), J. Chem. Phys. 71: 376 (1979).

    Article  CAS  Google Scholar 

  106. J. D. Rynbrandt and B. S. Rabinovitch, Intramolecular energy relaxation. Nonrandom decomposition of hexafluorobicyclopropyl, J. Phys. Chem. 75: 2164 (1971).

    Article  Google Scholar 

  107. J. F. Meagher, K. J. Chao, J. R. Barker, and B. S. Rabinovitch, Intramolecular vibrational energy relaxation. Decomposition of a series of chemically activated fluoro alkyl cyclopropanes, J. Phys. Chem. 78: 2535 (1974).

    Article  CAS  Google Scholar 

  108. A.-N. Ko and B. S. Rabinovitch, Initial state selection and intramolecular vibrational relaxation in reacting polyatomic molecules. Neopentylcyclobutane precursor, Chem. Phys. 30: 361 (1978).

    Article  CAS  Google Scholar 

  109. I. Oref, D. Schuetzle, and B. S. Rabinovitch, Unimolecular decomposition and intramolecular energy relaxation in the suprahigh-pressure region, J. Chem. Phys. 54: 575 (1971).

    Article  CAS  Google Scholar 

  110. E. Thiele, M. F. Goodman, and J. Stone, Can lasers be used to break chemical bonds selectively?, Opt. Eng. 19: 10 (1980).

    Article  CAS  Google Scholar 

  111. W. Forst, Methods for calculating energy-level densities, Chem. Rev. 71: 339 (1971).

    Article  CAS  Google Scholar 

  112. J. D. Doll, Anharmonic corrections in unimolecular rate theory, Chem. Phys. Lett. 72: 139 (1980).

    Article  CAS  Google Scholar 

  113. P. J. Nagy and W. L. Hase, Intramolecular vibrational energy relaxation in benzene, Chem. Phys. Lett. 54: 73 (1978).

    Article  CAS  Google Scholar 

  114. P. J. Nagy and W. L. Hase, Intramolecular vibrational energy relaxation in benzene, Chem. Phys. Lett. 58: 482(E) (1978).

    Google Scholar 

  115. R. J. Wolf and W. L. Hase, Quasiperiodic trajectories for a multidimensional anharmonic classical Hamiltonian excited above the unimolecular threshold, J. Chem. Phys. 73: 3779 (1980).

    Article  CAS  Google Scholar 

  116. S. Chapman, B. C. Garrett, and W. H. Miller, Semiclassical eigenvalues for nonseparable systems: Nonperturbative solution of the Hamiltonian-Jacobi equation in action-angle variables, J. Chem. Phys. 64: 502 (1976).

    Article  CAS  Google Scholar 

  117. G. C. Schatz and T. Mulloney, Classical perturbation theory of good action-angle variables. Applications to semiclassical eigenvalues and to collisional energy transfer in polyatomic molecules, J. Phys. Chem. 83: 989 (1979).

    Article  CAS  Google Scholar 

  118. R. T. Swimm and J. B. Delos, Semiclassical calculations of vibrational energy levels for nonseparable systems using the Birkhoff-Gustavson normal form, J. Chem. Phys. 71: 1706 (1979).

    Article  CAS  Google Scholar 

  119. D. W. Noid, M. L. Koszykowski, and R. A. Marcus, Semiclassical calculation of eigenvalues for a three-dimensional system, J. Chem. Phys. 73: 391 (1980).

    Article  CAS  Google Scholar 

  120. R. L. Swofford, M. E. Long, and A. C. Albrecht, C-H vibrational states of benzene, naphthalene, and anthracene in the visible region by thermal lensing spectroscopy and the local mode model, J. Chem. Phys. 65: 179 (1976).

    Article  CAS  Google Scholar 

  121. B. R. Henry, Use of local modes in the description of highly vibrationally excited molecules, Acc. Chem. Res. 10: 207 (1977).

    Article  CAS  Google Scholar 

  122. R. T. Lawton and M. S. Child, Local mode vibrations of water, Mol. Phys. 37: 1799 (1979).

    Article  CAS  Google Scholar 

  123. D. P. Heller and S. Mukamel, Theory of vibrational overtone line shapes of polyatomic molecules, J. Chem. Phys. 70: 463 (1979).

    Article  CAS  Google Scholar 

  124. E. J. Heller and W. M. Gelbart, Normal mode spectra in pure local mode molecules, J. Chem. Phys. 73: 626 (1980).

    Article  CAS  Google Scholar 

  125. T. F. Deutsch and S. R. J. Brueck, ν3 mode absorption behavior of CO2 laser excited SF6, J. Chem. Phys. 70: 2063 (1979).

    Article  CAS  Google Scholar 

  126. J. W. Perry and A. H. Zewail, Observation of high-energy vibrational overtones of molecules in solids: Local modes and intramolecular relaxations, J. Chem. Phys. 70: 582 (1979).

    Article  CAS  Google Scholar 

  127. R. J. Wolf and W. L. Hase, Importance of angular momentum constraints in the product energy partitioning of model H-C-C → H + C=C dissociation, J. Chem. Phys. 73: 3010 (1980).

    Article  CAS  Google Scholar 

  128. J. L. Franklin, Energy distribution in the unimolecular decomposition of ions, in: “Gas Phase Ion Chemistry”, Vol. 1, M. T. Bowers, ed., Academic, New York (1979), p. 273.

    Google Scholar 

  129. E. Thiele, M. F. Goodman, and J. Stone, Restricted intramolecular vibrational relaxation in polyatomics and laser selective effects, Chem. Phys. Lett. 69: 18 (1980).

    Article  CAS  Google Scholar 

  130. J. W. Duff and P. Brumer, Exponentiating trajectories and statistical behavior in collinear atom-diatom collisions, J. Chem. Phys. 67: 4898 (1977).

    Article  CAS  Google Scholar 

  131. K. D. Hänsel, The stability of molecular motion and intramolecular energy transfer, J. Chem. Phys. 70: 1830 (1979).

    Article  Google Scholar 

  132. C. Cerjan and W. P. Reinhardt, Critical point analysis of instabilities in Hamiltonian systems: Classical mechanics of stochastic intramolecular energy transfer, J. Chem. Phys. 71: 1819 (1979).

    Article  CAS  Google Scholar 

  133. J. W. Duff and D. G. Truhlar, Effect of curvature of the reaction path on dynamic effects in endothermic chemical reactions and product energies in exothermic reactions, J. Chem. Phys. 62: 2477 (1975).

    Article  CAS  Google Scholar 

  134. D. G. Truhlar and D. A. Dixon, Direct-mode chemical reactions: Classical theories, in: “Atom-Molecule Collision Theory: A Guide for the Experimentalist”, R. B. Bernstein, ed., Plenum, New York (1979), p. 595.

    Chapter  Google Scholar 

  135. D. A. Dixon and D. R. Herschbach, Energy transfer processes involving van der Waals bonds, Ber. Bunsenges. Phys. Chem. 81: 145 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hase, W.L. (1981). Overview of Unimolecular Dynamics. In: Truhlar, D.G. (eds) Potential Energy Surfaces and Dynamics Calculations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1735-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1735-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1737-2

  • Online ISBN: 978-1-4757-1735-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics