Skip to main content

Pulmonary Diffusing Capacity for O2 and CO by Rebreathing Techniques Using Stable Isotopes

  • Chapter
  • 128 Accesses

Part of the book series: Ettore Majorana International Science Series ((EMISS,volume 3))

Abstract

It is generally held that the alveolar-capillary membrane is not a significant limiting factor to oxygen transport in normal lungs of resting man at sea level. It is also well established that diffusion limitation becomes increasingly important in hypoxia. Therefore, the diffusive conductance or diffusing capacity of the lung (DL) must be finite and is expected to limit maximal O2 uptake in extreme conditions such as high altitude hypoxia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adaro, F., Scheid, P., Teichmann, J. and Piiper, J., 1973. A rebreathing method for estimating pulmonary (math): theory and measurements in dog lungs. Respir. Physiol. 18:43–63.

    Article  PubMed  CAS  Google Scholar 

  • Adaro, F., Meyer, M. and Sikand, R.S., 1976. Rebreathing and single breath pulmonary CO diffusing capacity in man at rest and exercise studied by C18O isotope. Bull. Europ. Physiopath. Resp. 12:747–756.

    CAS  Google Scholar 

  • Burns, B. and Gurtner, G.H., 1973. A specific carrier for oxygen and carbon monoxide in the lung and placenta. Drug. Metab. Disp. 1:374–377.

    CAS  Google Scholar 

  • Cander, L. and Forster, R.E., 1959. Determination of pulmonary parenchymal tissue volume and pulmonary capillary flow in man. J. Appl. Physiol. 14: 541–551.

    CAS  Google Scholar 

  • Cerretelli, P., Di Prampero, P.E. and Rennie, D.W., 1970. Measurement of mixed venous oxygen tension by a modified rebreathing procedure. J. Appl. Physiol. 28: 707–711.

    PubMed  CAS  Google Scholar 

  • Cerretelli, P., Veicsteinas, A., Teichmann, J., Magnussen, H. and Piiper, J., 1974. Estimation by a rebreathing method of pulmonary O2 diffusing capacity in man. J. Appl. Physiol. 37: 526–532.

    PubMed  CAS  Google Scholar 

  • Chinet, A., Micheli, J.L. and Haab, P., 1971. Inhomogeneity effects on O2 and CO pulmonary diffusing capacity estimates by steady-state methods. Theory. Respir. Physiol. 13: 1–22.

    Article  PubMed  CAS  Google Scholar 

  • Cross, C.E., Gong, H., Kurpershoek, C.J., Gillespie, J.R. and Hyde, R.W., 1973. Alterations in distribution of blood flow to the lung’s diffusion surfaces during exercise. J. Clin. Invest. 52: 414–421.

    Article  PubMed  CAS  Google Scholar 

  • Farney, R.J., Morris, A.H., Gardner, R.M. and Armstrong, J.D., 1977. Rebreathing pulmonary capillary and tissue volume in normals after saline infusion. J. Appl. Physiol. 43: 246–253.

    PubMed  CAS  Google Scholar 

  • Geiser, J., Chinet, A. and Haab, P., 1979. Pulmonary O2 diffusing capacity estimates from assumed log-normal V/Q distribution. Respir. Physiol. 37: 31–44.

    Article  PubMed  CAS  Google Scholar 

  • Gong, H., Kurpershoek, C.J., Meyer, D.B. and Cross, C.E., 1972a. ffects of cardiac output on 18O2 lung diffusion in normal resting man. Respir. Physiol. 16: 313–326.

    Article  PubMed  CAS  Google Scholar 

  • Gong, H., Kurpershoek, C. and Cross, C.E., 1972b. 18O2 diffusing capacity measured by a rebreathing method in normal man. Clin. Res. 20: 195.

    Google Scholar 

  • Gurtner, G., Peavy, H., Summer, W. and Burns, B., 1975. Physiological evidence for the presence of a specific O2, CO carrier in the lung and placenta. Prog. Resp. Res. 8: 166–176.

    Google Scholar 

  • Haab, P., Duc, G., Stucki, R. and Piiper, J., 1964. Les échanges gazeux en hypoxie et la capacité de diffusion pour l’oxygène chez le chien narcotise. Helv. Physiol. Acta 22: 203–227.

    CAS  Google Scholar 

  • Holland, R.A.B., Van Hezewijk, W. and Zubzanda, J., 1977. Velocity of oxygen uptake by partly saturated adult and fetal human red cells. Respir. Physiol. 29: 303–314.

    Article  PubMed  CAS  Google Scholar 

  • Hyde, R.W., Forster, R.E., Power, G.G., Nairn, J. and Rynes, R., 1966. Measurement of o2 diffusing capacity of the lungs with a stable O2 isotope. J. Clin. Invest. 45: 1178–1193.

    Article  PubMed  CAS  Google Scholar 

  • Kruhøffer, P., 1954. Studies on the lung diffusion coefficient for carbon monoxide in normal human subjects by means of C14O. Acta Physiol. Scand. 32: 106–123.

    Article  PubMed  Google Scholar 

  • Lawson, W.H., 1970. Rebreathing measurements of pulmonary diffusing capacity for CO during exercise. J. Appl. Physiol. 29: 896–900.

    PubMed  Google Scholar 

  • Lewis, B.M., Lin, T.H., Noe, F.E. and Hayford-Weising, E.J., 1959. The measurement of pulmonary diffusing capacity for carbon monoxide by a rebreathing method. J. Clin. Invest. 38: 2073–2086.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, B.M., Hayford-Welsing, E.J., Furusho, A., and Reed, L.C, 1961. Effect of uneven ventilation on pulmonary diffusing capacity. J. Appl. Physiol. 16: 679–683.

    PubMed  CAS  Google Scholar 

  • Lilienthal, J.L., Riley, R.L., Proemmel, D.D. and Franke, R.E., 1946. An experimental analysis in man of the O2 pressure gradient from alveolar air to arterial blood during rest and exercise at sea level and at altitude. Am. J. Physiol. 147: 199–216.

    PubMed  Google Scholar 

  • Mendoza, C., Peavy, H., Burns, B. and Gurtner, G., 1977. Saturation kinetics for steady-state pulmonary CO transfer. J. Appl. Physiol. 43: 880–884.

    PubMed  CAS  Google Scholar 

  • Meyer, M., 1979. Experimental evidence against role of facilitated transport of carbon monoxide in alveolar gas. Pflügers Arch. 382: Suppl. R17.

    Article  Google Scholar 

  • Micheli, J.L. and Haab, P., 1970. Estimation de la capacité de diffusion pulmonaire pour l’oxygène chez l’homme au repos par la méthode du rebreathing hypoxique. J. Physiol. (Paris) 62: Suppl. 1, 194–195.

    Google Scholar 

  • Mochizuki, M., 1966. Study on the oxygenation velocity of the human red cell. Jap. J. Physiol. 16: 635–648.

    Article  CAS  Google Scholar 

  • Piiper, J., Dejours, P., Haab, P. and Rahn, H., 1971. Concepts and basic quantities in gas exchange physiology. Respir. Physiol. 13: 292–304.

    Article  PubMed  CAS  Google Scholar 

  • Piiper, J., Meyer, M. and Scheid, P., 1979. Alveolar-capillary equilibration kinetics of CO2: measurements by rebreathing in man at rest and during exercise. Physiologist 22: 101.

    Google Scholar 

  • Rankin, J., McNeill, R.S. and Forster, R.E., 1960. Influence of increased alveolar CO2 tension on pulmonary diffusing capacity for CO in man. J. Appl. Physiol. 15: 543–549.

    PubMed  CAS  Google Scholar 

  • Rose, G.L., Cassidy, S.S. and Johnson, R.L., 1979. Diffusing capacity at different lung volumes during breath holding and rebreathing. J. Appl. Physiol. 47: 32–37.

    PubMed  CAS  Google Scholar 

  • Roughton, F.J.W. and Forster, R.E., 1957. Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J. Appl Physiol. 11: 291–302.

    Google Scholar 

  • Sackner, M.A., Gree’neltch, G., Heiman, M.S., Epstein, S. and Atkins, N., 1975. Diffusing capacity, membrane diffusing capacity, capillary blood volume, pulmonary tissue volume, and cardiac output measured by a rebreathing technique. Amer. Rev. Resp. Dis. 111: 157–165.

    PubMed  CAS  Google Scholar 

  • Scheid, P., Adaro, F., Teichmann, J. and Piiper, J., 1973. Rebreathing and steady state pulmonary DO2 in the dog and in inhomogeneous lung models. Respir. Physiol. 18: 258–272.

    Article  PubMed  CAS  Google Scholar 

  • Staub, N.C., Bishop, J.M. and Forster, R.E., 1962. Importance of diffusion and chemical reaction rates in O2 uptake in the lung. J. Appl. Physiol. 17: 21–27.

    PubMed  CAS  Google Scholar 

  • Teichmann, J., Adaro, F., Veicsteinas, A., Cerretelli, P. and Piiper, J., 1974. Determination of pulmonary blood flow by rebreathing of soluble inert gases. Respiration 31: 296–309.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, L.J., 1972. Algorithms for selected blood acid-base and blood gas calculations. J. Appl. Physiol. 33: 154–158.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meyer, M., Scheid, P., Piiper, J. (1980). Pulmonary Diffusing Capacity for O2 and CO by Rebreathing Techniques Using Stable Isotopes. In: Cumming, G., Bonsignore, G. (eds) Pulmonary Circulation in Health and Disease. Ettore Majorana International Science Series, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1721-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1721-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1723-5

  • Online ISBN: 978-1-4757-1721-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics