Ultraviolet Absorption, Circular Dichroism, and Optical Rotatory Dispersion in Biomembrane Studies

  • Dan W. Urry
  • Marianna M. Long


The fundamental concerns in applying optical methods to the study of biomembranes arise from complications introduced by their particulate nature; the basic objective is not solely to describe the actual absorbance by separating it from the effects of light scattering in the heterogeneous system. Moreover, the objective is to correct the spectrum to the absorbance, or difference absorbance, values that would occur if the molecules were uniformly distributed while retaining their membrane conformational state. This, of course, is because the reference state, for which there is much information, is one in which the polypeptide or protein species of interest is molecularly dispersed in solution. In order to proceed in a more sure-footed manner, a brief review of the fundamentals of absorption and the factors that alter absorption inten-sity and spectral position is warranted. Achieving a satisfactory perspective of the fundamentals allows for a more confident approach to the unique problems of membrane systems.


Circular Dichroism Ultraviolet Absorption Purple Membrane Dipole Strength Rotational Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moscowitz, A. 1960. Theory and analysis of rotatory dispersion curves. In: Optical Rotatory Dispersion. C. Djerassi, ed. McGraw-Hill, New York. pp. 150–177.Google Scholar
  2. la. Urry, D. W. 1970. Spectroscopic Approaches to Biomolecular Conformation. AMA Press, Chicago, Illinois. pp. 33–121.Google Scholar
  3. 2.
    Kasha, M. 1963. Energy transfer mechanisms and the molecular exciton model for molecular aggregates. Radio. Res. 20: 55–71.CrossRefGoogle Scholar
  4. 3.
    Rhodes, W. 1961. The hypochromism and other spectral properties of helical polynucleotides. J. Am. Chem. Soc. 83: 3609–3617.CrossRefGoogle Scholar
  5. 4.
    Tinoco, Jr., I. 1961. Hypochromism in polynucleotides. J. Am. Chem. Soc. 82:4785–4790; 1961. Optical and other electronic properties of polymers. J. Chem. Phys. 34: 1067.CrossRefGoogle Scholar
  6. 5.
    Urry, D. W. 1973. Determining biomolecular conformations. III. Ultraviolet absorption spectroscopy. Res. Develop. 24: 28–36.Google Scholar
  7. 5a.
    Urry, D. W., et al. 1974. Biochem. Biophys. Res. Commun. 61: 1427–1433.CrossRefGoogle Scholar
  8. 6.
    Urry, D. W. 1972. Protein conformation in biomembranes: Optical rotation and absorption of membrane suspensions. Biochim. Biophys. Acta, Biomembr. Rev. 265: 115–168.CrossRefGoogle Scholar
  9. 7.
    Urry, D. W., and M. M. Long. 1974. Circular dichroism and absorption studies on biomembranes. In: Methods in Membrane Biology. E. D. Korn, ed. Plenum Press, New York. pp. 105–141.CrossRefGoogle Scholar
  10. 8.
    Duysens, L. N. M. 1956. The flattening of the absorption spectrum of suspensions, as compared to that of solutions. Biochim. Biophys. Acta 19: 1–12.PubMedCrossRefGoogle Scholar
  11. 9.
    Gordon, D. J., and G. Holzwarth. 1971. Artifacts in the measured optical activity of membrane suspensions. Arch. Biochem. Biophys. 142: 481–488.PubMedCrossRefGoogle Scholar
  12. 10.
    Urry, D. W. 1974. Corrections for optical rotation data in biomembranes. In: Methods in Enzymology, Vol. 32. S. P. Colowick and N. O. Kaplan, eds. Academic Press, New York. pp. 220–234.Google Scholar
  13. 11.
    Oesterhelt, D., and W. Stoeckenius. 1971. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature (New Biol.) 233: 149–152.Google Scholar
  14. 12.
    Blaurock, A. E., and W. Stoeckenius. 1971. Structure of the purple membrane. Nature (New Biol.) 233: 152–154.CrossRefGoogle Scholar
  15. 13.
    Henderson, R., and P. N. Unwin. 1975. Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257: 28–32.PubMedCrossRefGoogle Scholar
  16. 14.
    Unwin, P. N., and R. Henderson. 1975. Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94: 425–440.PubMedCrossRefGoogle Scholar
  17. 15.
    Henderson, R. 1975. The structure of the purple membrane from Halobacterium halobium: Analysis of the x-ray diffraction pattern. J. Mol. Biol. 93: 123–138.PubMedCrossRefGoogle Scholar
  18. 16.
    Blaurock, A. E. 1975. Bacteriorhodopsin: Transmembrane pump containing a-helix. J. Mol. Biol. 93: 139–158.PubMedCrossRefGoogle Scholar
  19. 17.
    Oesterhelt, D., and W. Stoeckenius. 1974. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. In: Methods in Enzymology, Vol. 31. S. P. Colowick and N. O. Kaplan, eds. Academic Press, New York. pp. 667–678.Google Scholar
  20. 18.
    Long, M. M., and D. W. Urry. 1976. Absorption and circular dichroism spectroscopies. In: Membrane Spectroscopy. E. Grell, ed. Springer-Verlag, Berlin and New York.Google Scholar
  21. 19.
    Quadrifoglio, F., and D. W. Urry. 1968. Ultraviolet rotatory properties of polypeptides in solution. I. Helical poly-L-aianine. J. Am. Chem. Soc. 90: 2755–2760.PubMedCrossRefGoogle Scholar
  22. 20.
    Masotti, L., D. W. Urry, and R. Llinas. 1973. Circular dichroism of lobster axonal membranes. Acta Vitami-nol. Enzymol. (Milano) 27: 154–158.Google Scholar
  23. 21.
    Masotti, L., M. M. Long, G. Sachs, and D. W. Urry. 1972. Circular dichroism of biological membranes. II. Plasma membranes and sarcotubular vesicles. Biochim. Biophys. Acta 266: 7–17.PubMedCrossRefGoogle Scholar
  24. 22.
    Urry, D. W., L. Masotti, and J. R. Krivacic. 1971. Circular dichroism of biological membranes. I. Mitochondria and red blood cell ghosts. Biochim. Biophys. Acta 241: 600–612.PubMedCrossRefGoogle Scholar
  25. 23.
    Urry, D. W., L. Masotti, and J. Krivacic. 1970. Improved ellipticity data for several biological membranes. Biochem. Biophys. Res. Commun. 41:521— 524.Google Scholar
  26. 24.
    Urry, D. W., and T. H. Ji, 1968. Distortions in circular dichroism patterns of particulate (or membranous) systems. Arch. Biochem. Biophys. 128: 802–807.PubMedCrossRefGoogle Scholar
  27. 25.
    Aizono, Y., A. A. Konstantinov, and Y. A. Sharonov. 1974. Effects of growth hormone on ATPase and fluorescence of isolated liver membranes utilizing the fluorescent substrate, 1, N6-etheno-adenosine triphosphate. Arch. Biochem. Biophys. 163: 634–643.PubMedCrossRefGoogle Scholar
  28. 26.
    Arutjunjan, A. M. et al. 1974. Magnetic circular dichroism and magnetooptical rotatory dispersion of sub-mitochondrial particles at room and liquid nitrogen temperatures. FEBS Lett. 46: 317–320.PubMedCrossRefGoogle Scholar
  29. 27.
    Braun, V. 1975. Covalent lipoprotein from the outer membrane of Escherichia coli. Biochim. Biophys. Acta 415: 325–377.Google Scholar
  30. 28.
    Brody, M., and B. Nathanson. 1972. Direct and indirect mechanisms of deaggregation by fatty acids in chlorophyll-containing systems. Biophys. J. 12: 774–790.PubMedCrossRefGoogle Scholar
  31. 29.
    Dolinger, P. M., M. Kielczewski, J. R. Trudell, G. Barth, R. E. Linden, E. Bunnenberg, and C. Djerassi. 1974. Magnetic circular dichroism studies. XXV. A preliminary investigation of microsomal cytochromes. Proc. Natl. Acad. Sci. U.S.A. 71: 399–403.PubMedCrossRefGoogle Scholar
  32. 30.
    Green, J. R., P. A. Edwards, and C. Green. 1973. Optical rotatory dispersion studies of compounds related to cholesterol in liposomes and the membranes of erythrocyte ghosts. Biochem. J. 135: 63–71.PubMedGoogle Scholar
  33. 31.
    Grosse, R., J. Malur, and K. R. H. Repke. 1972. Determination of secondary structures in isolated or membrane proteins by computer curve-fitting analysis of infrared and circular dichroic spectra. FEBS Lett. 25: 313–315.PubMedCrossRefGoogle Scholar
  34. 32.
    Hardwicke, P. M. D., and N. M. Green. 1974. The effect of delipidation on the adenosine triphosphatase of sarcoplasmic reticulum. Eur. J. Biochem. 42: 183–193.PubMedCrossRefGoogle Scholar
  35. 33.
    Ji, T. H. 1973. Circular dichroism of a membrane protein of Neurospora crassa. Biochem. Biophys. Res. Commun. 51: 829–835.CrossRefGoogle Scholar
  36. 34.
    Juliano, R. L. 1973. The proteins of the erythrocyte membrane. Biochem. Biophys. Res. Commun. 300: 341–378.Google Scholar
  37. 35.
    Khare, R. S. 1975. X-ray, electron and optical studies on membrane-drug interactions. Stud. Biophys. 48: 161–172.Google Scholar
  38. 36.
    Kornguth, S. E., A. Flangas, J. Perrin, R. Geison, and G. Scott. 1972. Isolation of synaptic complexes in a CsCl gradient: Conditions for maximal resolution in the zonal rotor B-XIV and circular dichroism patterns. Prep. Biochem. 2: 167–192.PubMedCrossRefGoogle Scholar
  39. 37.
    Laggner, P. 1975. A highly «-helical structure protein in sarcoplasmic reticulum membranes. Nature 255: 427–428.PubMedCrossRefGoogle Scholar
  40. 38.
    Litman, B. J. 1972. Effect of light scattering on the circular dichroism of biological membranes. Biochemistry 11: 3243–3247.PubMedCrossRefGoogle Scholar
  41. 39.
    Lüllman, H., T. Peters, J. Preuner, and T. Rüther. 1975. Influence of ouabain and dihydroouabain on the circular dichroism of cardiac plasmalemmal microsomes. Naunyn Schmiedebergs Arch. Pharmcol. 290: 1–19.CrossRefGoogle Scholar
  42. 40.
    Moore, W. V., and D. B. Wetlaufer. 1973. Circular dichroism of nerve membrane fractions: Effects of temperature, pH and electrolytes. J. Neurochem. 20: 135–149.PubMedCrossRefGoogle Scholar
  43. 41.
    Rottem, S., and L. Hayflick. 1973. Circular dichroism analysis of native and reaggregated mycoplasma membranes. Can. J. Biochem. 51: 632–636.PubMedCrossRefGoogle Scholar
  44. 42.
    Rubin, M. S., N. I. Swislock, and M. Sonenberg. 1973. Alteration of liver plasma membrane protein conformation by bovine growth hormone in vitro. Arch. Biochem. Biophys. 157: 252–259.CrossRefGoogle Scholar
  45. 43.
    Singer, J. A., and M. Morrison. 1972. Circular dichroism of human erythrocyte membranes solubilized by iV-pentanol. Biochim. Biophys. Acta 274: 64–70.PubMedCrossRefGoogle Scholar
  46. 44.
    Storey, B. T., and C. P. Lee. 1973. Circular dichroism of cytochrome oxidase, cytochrome b566, and cytochrome c in beef heart mitochondrial membrane fragments. Biochim. Biophys. Acta 292: 554–565.PubMedCrossRefGoogle Scholar
  47. 45.
    Strom, R., P. Caiafa, and B. Mondovi. 1972. Effect of alkaline pH on the optical properties of native and modified erythrocyte membranes. Biochemistry 11: 1908–1915.PubMedCrossRefGoogle Scholar
  48. 46.
    Verpoorte, J. A., and F. M. Smith. 1972. The optical activity, scattering, and viscosity of erythrocyte membranes. Can. J. Biochem. 50: 177–185.PubMedCrossRefGoogle Scholar
  49. 47.
    Khare, R. S., R. K. Mishra, and W. H. Falor. 1976. Influence of psychoactive drugs on the circular dichroism spectra of lyotropic dispersions of sphingomyelin. Indian J. Biochem. Biophys. 11: 331–334.Google Scholar
  50. 48.
    Khare, R. S., R. K. Mishra, W. H. Falor, and A. J. Hopfinger. 1974. The circular dichroism of sphingomyelin. Curr. Sci. 43: 67–71.Google Scholar
  51. 49.
    Litman, B. J., and Y. Barenholz. 1975. The optical activity of D-erythro-sphingomyelin and its contribution to the circular dichroism of sphingomyelin systems. Biochim. Biophys. Acta 394: 166–172.PubMedCrossRefGoogle Scholar
  52. 50.
    Yu, K., J. J. Baldessare, and C. Ho. 1974. Physical-chemical studies of phospholipids and poly(amino acids) interactions. Biochemistry 13: 4375–4381.PubMedCrossRefGoogle Scholar
  53. 51.
    Dea, I. C. M., and D. A. Rees. 1973. Aggregation with change of conformation in solutions of hemicellulose xylans. Carbohydr. Res. 29: 363–372.CrossRefGoogle Scholar
  54. 52.
    Gelman, R. A., and J. Blackwell. 1973. Interactions between mucopolysaccharides and cationic polypeptides in aqueous solution: Chondroitin 4-sulfate and dermatan sulfate. Biopolymers 12: 1959–1974.PubMedCrossRefGoogle Scholar
  55. 53.
    Gelman, R. A., and J. Blackwell. 1973. Heparin-polypeptide interactions in aqueous solution. Arch. Biochem. Biophys. 159: 427–433.PubMedCrossRefGoogle Scholar
  56. 54.
    Schodt, K. P., and J. Blackwell. 1976. Comparison of 4-proteoglycans in terms of their interactions with poly(L-arginine). Biopolymers 15: 469–482.PubMedCrossRefGoogle Scholar
  57. 55.
    Burnotte, J., B. D. Stollar, and G. D. Fasman. 1973. Immunological and circular dichroism studies of mal-eylated f-1 (A) histone and complexes with DNA. Arch. Biochem. Biophys. 155: 428–435.PubMedCrossRefGoogle Scholar
  58. 56.
    Day, L. A. 1973. Circular dichroism and ultraviolet absorption of a deoxyribonucleic acid binding protein of filamentous bacteriophage. Biochemistry 12: 5329–5339.PubMedCrossRefGoogle Scholar
  59. 57.
    Spelsberg, T. C., W. M. Mitchell, and F. Chytil. 1973. Structural alterations of acidic proteins by acid treatment of chromatin. Mol. Cell. Biochem. 1: 243–246.PubMedCrossRefGoogle Scholar
  60. 58.
    Williams, R. E., P. F. Lurquin, and V. L. Seligy. 1972. Circular dichroism of avian-erythrocyte chromatin and ethidium bromide bound to chromatin. Eur. J. Biochem. 29: 426–432.PubMedCrossRefGoogle Scholar
  61. 59.
    Dorman, B. P., and M. F. Maestre. 1973. Experimental differential light-scattering correction to the circular dichroism of bacteriophage T2. Proc. Natl. Acad. Sci. U.S.A. 70: 255–259.PubMedCrossRefGoogle Scholar
  62. 60.
    Homer, R. B., and R. M. Goodman. 1975. Circular dichroism and fluorescence studies on potato virus x and its structural components. Biochim. Biophys. Acta 378: 296–304.PubMedCrossRefGoogle Scholar
  63. 61.
    Rosenheck, K., and A. S. Schneider. 1973. Circular dichroism of chromaffin granule proteins in situ: Analysis of turbidity effects and protein conformation. Proc. Natl.. Acad. Sci. U.S.A. 70: 3458–3462.PubMedCrossRefGoogle Scholar
  64. 62.
    Schooley, R. E., and Govindjee. 1976. Cation-induced changes in the circular dichroism spectrum of chloro-plasts. FEBS Lett. 65: 123–125.CrossRefGoogle Scholar
  65. 63.
    Barron, L. D., and A. D. Buckingham. 1975. Rayleigh and Raman optical activity. Annu. Rev. Phys. Chem. 26: 381–396.CrossRefGoogle Scholar
  66. 64.
    Bohren, C. F. 1974. Light scattering by an optically active sphere. Chem. Phys. Lett. 29: 458–462.CrossRefGoogle Scholar
  67. 65.
    Sjoholm, I., and B. Ekman. 1975. Scattering of light— A serious potential risk in circular dichroism measurements in the far ultraviolet region. Anal. Biochem. 65: 596–599.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Dan W. Urry
    • 1
  • Marianna M. Long
    • 1
  1. 1.Laboratory of Molecular Biophysics, and the Cardiovascular Research and Training CenterUniversity of Alabama Medical CenterBirminghamUSA

Personalised recommendations