Skip to main content

Ultraviolet Absorption, Circular Dichroism, and Optical Rotatory Dispersion in Biomembrane Studies

  • Chapter
Membrane Physiology

Abstract

The fundamental concerns in applying optical methods to the study of biomembranes arise from complications introduced by their particulate nature; the basic objective is not solely to describe the actual absorbance by separating it from the effects of light scattering in the heterogeneous system. Moreover, the objective is to correct the spectrum to the absorbance, or difference absorbance, values that would occur if the molecules were uniformly distributed while retaining their membrane conformational state. This, of course, is because the reference state, for which there is much information, is one in which the polypeptide or protein species of interest is molecularly dispersed in solution. In order to proceed in a more sure-footed manner, a brief review of the fundamentals of absorption and the factors that alter absorption inten-sity and spectral position is warranted. Achieving a satisfactory perspective of the fundamentals allows for a more confident approach to the unique problems of membrane systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moscowitz, A. 1960. Theory and analysis of rotatory dispersion curves. In: Optical Rotatory Dispersion. C. Djerassi, ed. McGraw-Hill, New York. pp. 150–177.

    Google Scholar 

  2. la. Urry, D. W. 1970. Spectroscopic Approaches to Biomolecular Conformation. AMA Press, Chicago, Illinois. pp. 33–121.

    Google Scholar 

  3. Kasha, M. 1963. Energy transfer mechanisms and the molecular exciton model for molecular aggregates. Radio. Res. 20: 55–71.

    Article  CAS  Google Scholar 

  4. Rhodes, W. 1961. The hypochromism and other spectral properties of helical polynucleotides. J. Am. Chem. Soc. 83: 3609–3617.

    Article  CAS  Google Scholar 

  5. Tinoco, Jr., I. 1961. Hypochromism in polynucleotides. J. Am. Chem. Soc. 82:4785–4790; 1961. Optical and other electronic properties of polymers. J. Chem. Phys. 34: 1067.

    Article  CAS  Google Scholar 

  6. Urry, D. W. 1973. Determining biomolecular conformations. III. Ultraviolet absorption spectroscopy. Res. Develop. 24: 28–36.

    Google Scholar 

  7. Urry, D. W., et al. 1974. Biochem. Biophys. Res. Commun. 61: 1427–1433.

    Article  CAS  Google Scholar 

  8. Urry, D. W. 1972. Protein conformation in biomembranes: Optical rotation and absorption of membrane suspensions. Biochim. Biophys. Acta, Biomembr. Rev. 265: 115–168.

    Article  CAS  Google Scholar 

  9. Urry, D. W., and M. M. Long. 1974. Circular dichroism and absorption studies on biomembranes. In: Methods in Membrane Biology. E. D. Korn, ed. Plenum Press, New York. pp. 105–141.

    Chapter  Google Scholar 

  10. Duysens, L. N. M. 1956. The flattening of the absorption spectrum of suspensions, as compared to that of solutions. Biochim. Biophys. Acta 19: 1–12.

    Article  PubMed  CAS  Google Scholar 

  11. Gordon, D. J., and G. Holzwarth. 1971. Artifacts in the measured optical activity of membrane suspensions. Arch. Biochem. Biophys. 142: 481–488.

    Article  PubMed  CAS  Google Scholar 

  12. Urry, D. W. 1974. Corrections for optical rotation data in biomembranes. In: Methods in Enzymology, Vol. 32. S. P. Colowick and N. O. Kaplan, eds. Academic Press, New York. pp. 220–234.

    Google Scholar 

  13. Oesterhelt, D., and W. Stoeckenius. 1971. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature (New Biol.) 233: 149–152.

    CAS  Google Scholar 

  14. Blaurock, A. E., and W. Stoeckenius. 1971. Structure of the purple membrane. Nature (New Biol.) 233: 152–154.

    Article  CAS  Google Scholar 

  15. Henderson, R., and P. N. Unwin. 1975. Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257: 28–32.

    Article  PubMed  CAS  Google Scholar 

  16. Unwin, P. N., and R. Henderson. 1975. Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94: 425–440.

    Article  PubMed  CAS  Google Scholar 

  17. Henderson, R. 1975. The structure of the purple membrane from Halobacterium halobium: Analysis of the x-ray diffraction pattern. J. Mol. Biol. 93: 123–138.

    Article  PubMed  CAS  Google Scholar 

  18. Blaurock, A. E. 1975. Bacteriorhodopsin: Transmembrane pump containing a-helix. J. Mol. Biol. 93: 139–158.

    Article  PubMed  CAS  Google Scholar 

  19. Oesterhelt, D., and W. Stoeckenius. 1974. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. In: Methods in Enzymology, Vol. 31. S. P. Colowick and N. O. Kaplan, eds. Academic Press, New York. pp. 667–678.

    Google Scholar 

  20. Long, M. M., and D. W. Urry. 1976. Absorption and circular dichroism spectroscopies. In: Membrane Spectroscopy. E. Grell, ed. Springer-Verlag, Berlin and New York.

    Google Scholar 

  21. Quadrifoglio, F., and D. W. Urry. 1968. Ultraviolet rotatory properties of polypeptides in solution. I. Helical poly-L-aianine. J. Am. Chem. Soc. 90: 2755–2760.

    Article  PubMed  CAS  Google Scholar 

  22. Masotti, L., D. W. Urry, and R. Llinas. 1973. Circular dichroism of lobster axonal membranes. Acta Vitami-nol. Enzymol. (Milano) 27: 154–158.

    CAS  Google Scholar 

  23. Masotti, L., M. M. Long, G. Sachs, and D. W. Urry. 1972. Circular dichroism of biological membranes. II. Plasma membranes and sarcotubular vesicles. Biochim. Biophys. Acta 266: 7–17.

    Article  PubMed  CAS  Google Scholar 

  24. Urry, D. W., L. Masotti, and J. R. Krivacic. 1971. Circular dichroism of biological membranes. I. Mitochondria and red blood cell ghosts. Biochim. Biophys. Acta 241: 600–612.

    Article  PubMed  CAS  Google Scholar 

  25. Urry, D. W., L. Masotti, and J. Krivacic. 1970. Improved ellipticity data for several biological membranes. Biochem. Biophys. Res. Commun. 41:521— 524.

    Google Scholar 

  26. Urry, D. W., and T. H. Ji, 1968. Distortions in circular dichroism patterns of particulate (or membranous) systems. Arch. Biochem. Biophys. 128: 802–807.

    Article  PubMed  CAS  Google Scholar 

  27. Aizono, Y., A. A. Konstantinov, and Y. A. Sharonov. 1974. Effects of growth hormone on ATPase and fluorescence of isolated liver membranes utilizing the fluorescent substrate, 1, N6-etheno-adenosine triphosphate. Arch. Biochem. Biophys. 163: 634–643.

    Article  PubMed  CAS  Google Scholar 

  28. Arutjunjan, A. M. et al. 1974. Magnetic circular dichroism and magnetooptical rotatory dispersion of sub-mitochondrial particles at room and liquid nitrogen temperatures. FEBS Lett. 46: 317–320.

    Article  PubMed  CAS  Google Scholar 

  29. Braun, V. 1975. Covalent lipoprotein from the outer membrane of Escherichia coli. Biochim. Biophys. Acta 415: 325–377.

    Google Scholar 

  30. Brody, M., and B. Nathanson. 1972. Direct and indirect mechanisms of deaggregation by fatty acids in chlorophyll-containing systems. Biophys. J. 12: 774–790.

    Article  PubMed  CAS  Google Scholar 

  31. Dolinger, P. M., M. Kielczewski, J. R. Trudell, G. Barth, R. E. Linden, E. Bunnenberg, and C. Djerassi. 1974. Magnetic circular dichroism studies. XXV. A preliminary investigation of microsomal cytochromes. Proc. Natl. Acad. Sci. U.S.A. 71: 399–403.

    Article  PubMed  CAS  Google Scholar 

  32. Green, J. R., P. A. Edwards, and C. Green. 1973. Optical rotatory dispersion studies of compounds related to cholesterol in liposomes and the membranes of erythrocyte ghosts. Biochem. J. 135: 63–71.

    PubMed  CAS  Google Scholar 

  33. Grosse, R., J. Malur, and K. R. H. Repke. 1972. Determination of secondary structures in isolated or membrane proteins by computer curve-fitting analysis of infrared and circular dichroic spectra. FEBS Lett. 25: 313–315.

    Article  PubMed  CAS  Google Scholar 

  34. Hardwicke, P. M. D., and N. M. Green. 1974. The effect of delipidation on the adenosine triphosphatase of sarcoplasmic reticulum. Eur. J. Biochem. 42: 183–193.

    Article  PubMed  CAS  Google Scholar 

  35. Ji, T. H. 1973. Circular dichroism of a membrane protein of Neurospora crassa. Biochem. Biophys. Res. Commun. 51: 829–835.

    Article  CAS  Google Scholar 

  36. Juliano, R. L. 1973. The proteins of the erythrocyte membrane. Biochem. Biophys. Res. Commun. 300: 341–378.

    CAS  Google Scholar 

  37. Khare, R. S. 1975. X-ray, electron and optical studies on membrane-drug interactions. Stud. Biophys. 48: 161–172.

    CAS  Google Scholar 

  38. Kornguth, S. E., A. Flangas, J. Perrin, R. Geison, and G. Scott. 1972. Isolation of synaptic complexes in a CsCl gradient: Conditions for maximal resolution in the zonal rotor B-XIV and circular dichroism patterns. Prep. Biochem. 2: 167–192.

    Article  PubMed  CAS  Google Scholar 

  39. Laggner, P. 1975. A highly «-helical structure protein in sarcoplasmic reticulum membranes. Nature 255: 427–428.

    Article  PubMed  CAS  Google Scholar 

  40. Litman, B. J. 1972. Effect of light scattering on the circular dichroism of biological membranes. Biochemistry 11: 3243–3247.

    Article  PubMed  CAS  Google Scholar 

  41. Lüllman, H., T. Peters, J. Preuner, and T. Rüther. 1975. Influence of ouabain and dihydroouabain on the circular dichroism of cardiac plasmalemmal microsomes. Naunyn Schmiedebergs Arch. Pharmcol. 290: 1–19.

    Article  Google Scholar 

  42. Moore, W. V., and D. B. Wetlaufer. 1973. Circular dichroism of nerve membrane fractions: Effects of temperature, pH and electrolytes. J. Neurochem. 20: 135–149.

    Article  PubMed  CAS  Google Scholar 

  43. Rottem, S., and L. Hayflick. 1973. Circular dichroism analysis of native and reaggregated mycoplasma membranes. Can. J. Biochem. 51: 632–636.

    Article  PubMed  CAS  Google Scholar 

  44. Rubin, M. S., N. I. Swislock, and M. Sonenberg. 1973. Alteration of liver plasma membrane protein conformation by bovine growth hormone in vitro. Arch. Biochem. Biophys. 157: 252–259.

    Article  CAS  Google Scholar 

  45. Singer, J. A., and M. Morrison. 1972. Circular dichroism of human erythrocyte membranes solubilized by iV-pentanol. Biochim. Biophys. Acta 274: 64–70.

    Article  PubMed  CAS  Google Scholar 

  46. Storey, B. T., and C. P. Lee. 1973. Circular dichroism of cytochrome oxidase, cytochrome b566, and cytochrome c in beef heart mitochondrial membrane fragments. Biochim. Biophys. Acta 292: 554–565.

    Article  PubMed  CAS  Google Scholar 

  47. Strom, R., P. Caiafa, and B. Mondovi. 1972. Effect of alkaline pH on the optical properties of native and modified erythrocyte membranes. Biochemistry 11: 1908–1915.

    Article  PubMed  CAS  Google Scholar 

  48. Verpoorte, J. A., and F. M. Smith. 1972. The optical activity, scattering, and viscosity of erythrocyte membranes. Can. J. Biochem. 50: 177–185.

    Article  PubMed  CAS  Google Scholar 

  49. Khare, R. S., R. K. Mishra, and W. H. Falor. 1976. Influence of psychoactive drugs on the circular dichroism spectra of lyotropic dispersions of sphingomyelin. Indian J. Biochem. Biophys. 11: 331–334.

    Google Scholar 

  50. Khare, R. S., R. K. Mishra, W. H. Falor, and A. J. Hopfinger. 1974. The circular dichroism of sphingomyelin. Curr. Sci. 43: 67–71.

    CAS  Google Scholar 

  51. Litman, B. J., and Y. Barenholz. 1975. The optical activity of D-erythro-sphingomyelin and its contribution to the circular dichroism of sphingomyelin systems. Biochim. Biophys. Acta 394: 166–172.

    Article  PubMed  CAS  Google Scholar 

  52. Yu, K., J. J. Baldessare, and C. Ho. 1974. Physical-chemical studies of phospholipids and poly(amino acids) interactions. Biochemistry 13: 4375–4381.

    Article  PubMed  CAS  Google Scholar 

  53. Dea, I. C. M., and D. A. Rees. 1973. Aggregation with change of conformation in solutions of hemicellulose xylans. Carbohydr. Res. 29: 363–372.

    Article  CAS  Google Scholar 

  54. Gelman, R. A., and J. Blackwell. 1973. Interactions between mucopolysaccharides and cationic polypeptides in aqueous solution: Chondroitin 4-sulfate and dermatan sulfate. Biopolymers 12: 1959–1974.

    Article  PubMed  CAS  Google Scholar 

  55. Gelman, R. A., and J. Blackwell. 1973. Heparin-polypeptide interactions in aqueous solution. Arch. Biochem. Biophys. 159: 427–433.

    Article  PubMed  CAS  Google Scholar 

  56. Schodt, K. P., and J. Blackwell. 1976. Comparison of 4-proteoglycans in terms of their interactions with poly(L-arginine). Biopolymers 15: 469–482.

    Article  PubMed  CAS  Google Scholar 

  57. Burnotte, J., B. D. Stollar, and G. D. Fasman. 1973. Immunological and circular dichroism studies of mal-eylated f-1 (A) histone and complexes with DNA. Arch. Biochem. Biophys. 155: 428–435.

    Article  PubMed  CAS  Google Scholar 

  58. Day, L. A. 1973. Circular dichroism and ultraviolet absorption of a deoxyribonucleic acid binding protein of filamentous bacteriophage. Biochemistry 12: 5329–5339.

    Article  PubMed  CAS  Google Scholar 

  59. Spelsberg, T. C., W. M. Mitchell, and F. Chytil. 1973. Structural alterations of acidic proteins by acid treatment of chromatin. Mol. Cell. Biochem. 1: 243–246.

    Article  PubMed  CAS  Google Scholar 

  60. Williams, R. E., P. F. Lurquin, and V. L. Seligy. 1972. Circular dichroism of avian-erythrocyte chromatin and ethidium bromide bound to chromatin. Eur. J. Biochem. 29: 426–432.

    Article  PubMed  CAS  Google Scholar 

  61. Dorman, B. P., and M. F. Maestre. 1973. Experimental differential light-scattering correction to the circular dichroism of bacteriophage T2. Proc. Natl. Acad. Sci. U.S.A. 70: 255–259.

    Article  PubMed  CAS  Google Scholar 

  62. Homer, R. B., and R. M. Goodman. 1975. Circular dichroism and fluorescence studies on potato virus x and its structural components. Biochim. Biophys. Acta 378: 296–304.

    Article  PubMed  CAS  Google Scholar 

  63. Rosenheck, K., and A. S. Schneider. 1973. Circular dichroism of chromaffin granule proteins in situ: Analysis of turbidity effects and protein conformation. Proc. Natl.. Acad. Sci. U.S.A. 70: 3458–3462.

    Article  PubMed  CAS  Google Scholar 

  64. Schooley, R. E., and Govindjee. 1976. Cation-induced changes in the circular dichroism spectrum of chloro-plasts. FEBS Lett. 65: 123–125.

    Article  Google Scholar 

  65. Barron, L. D., and A. D. Buckingham. 1975. Rayleigh and Raman optical activity. Annu. Rev. Phys. Chem. 26: 381–396.

    Article  CAS  Google Scholar 

  66. Bohren, C. F. 1974. Light scattering by an optically active sphere. Chem. Phys. Lett. 29: 458–462.

    Article  CAS  Google Scholar 

  67. Sjoholm, I., and B. Ekman. 1975. Scattering of light— A serious potential risk in circular dichroism measurements in the far ultraviolet region. Anal. Biochem. 65: 596–599.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Urry, D.W., Long, M.M. (1980). Ultraviolet Absorption, Circular Dichroism, and Optical Rotatory Dispersion in Biomembrane Studies. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D. (eds) Membrane Physiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1718-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1718-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1720-4

  • Online ISBN: 978-1-4757-1718-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics