Modification of Membrane Function by Drugs

  • James W. PutneyJr.
  • Amir Askari

Abstract

The importance of the surface membrane of cells as the primary site of action of many drugs has been obvious since the earliest conceptions of membranes as regulatory barriers. As soon as the permeability characteristics of cells became apparent, investigators reasoned that polar and highly water-soluble agents were unlikely to gain access to the inner plasma of cells. The rapid action of many of these compounds similarly argued for the cell surface as a probable site of action. Ingenious quantitative analyses by A. J. Clarkw(1) showed that most drugs are maximally effective when occupying only a small fraction of the total surface area available. Thus the concept of specific recognition sites or receptors in (or on) the membrane was introduced. With very little modificatión, this concept remains today as a cornerstone principle of the basic mechanisms of drug action. Even agents that do not act through “classical” receptor mechanisms (e.g., the anesthetics discussed herein) produce their pharmacological actions by modifying membrane funtion. The effects of pharmacological agents on membrane functions have, therefore, a dual importance. First, such knowledge may obviously yield concepts useful in the alleviation or management of diseases that directly involve disorders of membrane function. Second, it is becoming increasingly apparent that the mode of actions of most (if not all) pharmacological agents involves modification of membrane functions either directly or indirectly. Thus the action of drugs on membrane functions can be considered a fundamental aspect of drug action important in virtually all areas of pharmacology.

Keywords

Smooth Muscle Local Anesthetic Adenylate Cyclase Parotid Gland Cholera Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clark, A. J. 1937. Handbook of Experimental Pharmacology, Vol. IV: General Pharmacology. Springer-Verlag, Berlin and New York.Google Scholar
  2. 2.
    Koelle, G. B. 1975. Neurohumoral transmission and the autonomic nervous system. In: The Pharmacological Basis of Therapeutics. L. S. Goodman and A. Gilman, eds. Macmillan, New York. pp. 404–444.Google Scholar
  3. 3.
    De Feudis, F. V. 1975 Amino acids as central neurotransmitters. Annu. Rev. Pharmacol. 15: 105–130.CrossRefGoogle Scholar
  4. 4.
    Phillis, J W. 1975. The pharmacology of neurons in the central nervous system. In: Cellular Pharmacology of Excitable Tissues. T. Narahashi, ed. Thomas, Springfield, Illinois. pp. 3–88.Google Scholar
  5. 5.
    Brimblecombe, R. W. 1974. Drug Actions on Cholinergic Systems. Univ. Park Press, Baltimore.Google Scholar
  6. 6.
    Potter, L. T. 1974. Studies of the nicotinic receptor-response mechanism in Torpedo postsynaptic membranes. In: Advances in Cytopharmacology, Vol. 2. B. Ceccarelli, F. Clementi, and J. Meldolesi, eds. Raven Press, New York. pp. 1–4.Google Scholar
  7. 7.
    Heilbronn, E. 1975. Biochemistry of cholinergic receptors. In: Cholinergic Mechanisms. P. G. Waser, ed. Raven Press, New York. pp. 343–364.Google Scholar
  8. 8.
    Cohen, J. B., and J.-P. Changeux. 1975. The cholinergic receptor protein in its membrane environment. Annu. Rev. Pharmacol. 15: 83–103.PubMedCrossRefGoogle Scholar
  9. 9.
    Parsons, R. L. 1975. Cellular pharmacology of postjunctional membrane receptors at the vertebrate motor end-plate. In: Cellular Pharmacology in Excitable Tissues. T. Narahashi, ed. Thomas, Springfield, Illinois. pp. 141–213.Google Scholar
  10. 10.
    Fatt, P., and B. Katz. 1951. An analysis of the endplate potential recorded with an intracellular electrode. J. Physiol. (Lond.) 115: 320–370.Google Scholar
  11. 11.
    del Castillo, J., and B. Katz. 1954. The membrane change produced by the neuromuscular transmitter. J. Physiol. (Lond.) 125: 546–565.Google Scholar
  12. 12.
    Maeno, T., C. Edwards, and S. Hashimura. 1971. Differences in effects on end-plate potentials between procaine and lidocaine as revealed by voltage-clamp experiments. J. Neurophysiol. 34: 32–46.PubMedGoogle Scholar
  13. 13.
    Deguchi, T., and T. Narahashi. 1971. Effects of procaine on ionic conductances of end-plate membranes. J. Pharmacol. Exp. Ther. 176: 423–433.PubMedGoogle Scholar
  14. 14.
    Katz, B., and R. Miledi. 1972. The statistical nature of the acetylcholine potential and its molecular components. J. Physiol. (Lond.) 224: 665–700.Google Scholar
  15. 15.
    Katz, B., and R. Miledi. 1973. The characteristics of “end-plate noise” produced by different depolarizing drugs. J. Physiol (Lond.) 230: 707–717.Google Scholar
  16. 16.
    Thesleff, S. 1975. Transmitter action on cholinergic receptors in skeletal muscle. In: Cholinergic Mechanisms. P. G. Waser, ed. Raven Press, New York. pp. 327–334.Google Scholar
  17. 17.
    Colquhoun, D. 1975. Mechanisms of drug action at the voluntary muscle endplate. Annu. Rev. Pharmacol. 15: 307–325.PubMedCrossRefGoogle Scholar
  18. 18.
    Volle, R. L. 1975. Cellular pharmacology of autonomic ganglia. In: Cellular Pharmacology of Excitable Tissues. T. Narahashi, ed. Thomas, Springfield, Illinois. pp. 89–140.Google Scholar
  19. 19.
    Kuriyama, H., T. Osa, Y. Sakamoto, and Y. Ito. 1975. Cellular pharmacology of autonomic nerve-effector junction and smooth muscle membranes. In: Cellular Pharmacology of Excitable Tissues. T. Narahashi, ed. Thomas, Springfield, Illinois. pp. 262–359.Google Scholar
  20. 20.
    Bolton, T. B. 1972. The depolarizing action of acetylcholine or carbachol in intestinal smooth muscle. J. Physiol. (Lond.) 220: 647–671.Google Scholar
  21. 21.
    Bolton, T. B. 1973. Effects of electrogenic sodium pumping on the membrane potential of longitudinal smooth muscle from terminal ileum of guinea pig. J. Physiol. (Lond.) 228: 693–712.Google Scholar
  22. 22.
    Worcel, M., and G. Hamon. 1976. Changes in ionic fluxes in uterine smooth muscle induced by carbachol. In: Physiology of Smooth Muscle. E. Bülbring and M. F. Shuba, eds. Raven Press, New York. pp. 339–345.Google Scholar
  23. 23.
    Schild, H. O. 1964. Calcium and the effects of drugs on depolarized smooth mucle. In: Pharmacology of Smooth Muscle. E. Bülbring, ed. Pergamon, Oxford. pp. 95–104.Google Scholar
  24. 24.
    Durbin, R. P., and D. H. Jenkinson 1961. The effect of carbachol on the permeability of depolarized smooth muscle to inorganic ions. J. Physiol. (Lond.) 157: 74–89.Google Scholar
  25. 25.
    Wit, A. L., and B. F. Hoffman. 1976. Modification of the cardiac action potential by pharmacologic agents. In: Cellular Pharmacology of Excitable Tissues. T. Narahashi, ed. Thomas, Springfield, Illinois. pp. 408484.Google Scholar
  26. 26.
    Ahlquist, R. P. 1948. A study of the adrenotropic receptors. Am. J. Physiol. 153: 586–600.PubMedGoogle Scholar
  27. 27.
    Ahlquist, R. P. 1958. Adrenergic drugs. In: Pharmacology in Medicine. V. A. Drill, ed. McGraw-Hill, New York. pp. 378–407.Google Scholar
  28. 28.
    Moran, N. C. 1973. The classification of adrenergic receptors. In: Frontiers in Catecholamine Research. E. Usdin and S. H. Snyder, eds. Pergamon, Oxford. pp. 291–294.Google Scholar
  29. 29.
    Schild, H. O. 1973. Receptor classification with special reference to ß-adrenergic receptors. In: Drug Receptors. H. P. Rang, ed. Univ. Park Press, Baltimore. pp. 29–36.Google Scholar
  30. 30.
    Bülbring, E. 1973. Action of catecholamines on the smooth muscle cell membrane. In: Drug Receptors. H. P. Rang, ed. Univ. Park Press, Baltimore. pp. 114.Google Scholar
  31. 31.
    Bülbring, E. 1973. Possible mechanism of the action of catecholamines on smooth muscle. In: Frontiers in Catecholamine Research. E. Usdin and S. H. Snyder, eds. Pergamon, Oxford. pp. 389–391.Google Scholar
  32. 32.
    Robison, G. A., R. W. Butcher, and E. W. Sutherland. 1971. Cyclic AMP. Academic Press, New York.Google Scholar
  33. 33.
    Marshall, J. M. 1968. Relation between the ionic environment and the action of drugs on the myometrium. Fed. Proc. 27: 115–119.PubMedGoogle Scholar
  34. 34.
    Marshall, J. M., and E. A. Kroeger. 1973. Adrenergic influences on uterine smooth muscle. Philos. Trans. R. Soc. B 265: 135–148.CrossRefGoogle Scholar
  35. 35.
    Kao, C. Y. 1971. Some new leads into the physiology of mammalian smooth muscles. In: Research in Physiology. F. F. Kao, K. Koizumi, and M. Vassale, eds. Aulo Gaggi, Bologna. pp. 365–372.Google Scholar
  36. 36.
    Kao, C. Y., J. R. McCullough, and H. L. Davidson. 1971. Basis of epinephrine hyperpolarization in uterine smooth muscle. Fed. Proc. 30:384 Abs.Google Scholar
  37. 37.
    Inomata, H., and C. Y. Kao. 1976. Ionic currents in an intestinal smooth muscle. In: Physiology of Smooth Muscle. E. Bülbring and M. F. Shuba, eds. Raven Press, New York. pp. 49–50.Google Scholar
  38. 38.
    Tomita, T. 1974. Conductance increase by adrenaline in guinea pig taenia coli studied with voltage-clamp method. Nature 250: 432–433.PubMedCrossRefGoogle Scholar
  39. 39.
    Shuba, M. F., A. V. Gurkovskaya, M. J. Klevetz, N. G. Kochemasova, and V. M. Taranenko. 1976. Mechanism of the excitatory and inhibitory actions of catecholamines on the membrane of smooth muscle cells. In: Physiology of Smooth Muscle. E. Bülbring and M. F. Shuba, eds. Raven Press, New York. pp. 347–355.Google Scholar
  40. 40.
    Tsien, R. W. 1974. Effects of epinephrine on the pacemaker potassium current of cardiac Purkinje fibers. J. Gen. Physiol. 64: 293–319.PubMedCrossRefGoogle Scholar
  41. 41.
    Tsien, R. W. 1974. Mode of action of chronotropic agents in cardiac Purkinje fibers. Does epinephrine act by directly modifying the external surface charge? J. Gen. Physiol. 64: 320–342.PubMedCrossRefGoogle Scholar
  42. 42.
    Reuter, H. 1974. Localization of beta-adrenergic receptors, and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle. J. Physiol. (Lond.) 242: 429–451.Google Scholar
  43. 43.
    Narahashi, T. 1971. Neurophysiological basis for drug action: Ionic mechanism, site of action and active form in nerve fibers. In: Biophysics and Physiology of Excitable Membranes. W. J. Adelman, Jr., ed. Van Nostrand-Reinhold, Princeton, New Jersey. pp. 423462.Google Scholar
  44. 44.
    Narahashi, T. 1972. Mechanism of action of tetrodo-toxin and saxitoxin on excitable membranes. Fed. Proc. 31: 1124–1132.PubMedGoogle Scholar
  45. 45.
    Kao, C. Y. 1966. Tetrodotoxin, saxitoxin and their significance in the study of excitation phenomena. Pharmacol. Rev. 18: 997–1049.PubMedGoogle Scholar
  46. 46.
    Kao, C. Y. 1972. Pharmacology of tetrodotoxin and saxitoxin. Fed. Proc. 31: 1117–1123.PubMedGoogle Scholar
  47. 47.
    Narahashi, T., E. X. Albuquerque, and T. Deguchi. 1971. Effects of batrachotoxin on membrane potential and conductance of squid giant axons. J. Gen. Physiol. 58: 54–70.PubMedCrossRefGoogle Scholar
  48. 48.
    Ritchie, J. M. 1975. Binding of tetrodotoxin and saxitoxin to sodium channels. Philos. Trans. R. Soc. Lond. B 270: 319–336.CrossRefGoogle Scholar
  49. 49.
    Moore, J. W., T. Narahashi, and T. I. Shaw. 1967. An upper limit to the number of sodium channels in nerve membrane? J. Physiol. (Lond.) 188: 99–105.Google Scholar
  50. 50.
    Levinson, S. R., and H. Meves. 1975. The binding of tritiated tetrodotoxin to squid giant axons. Philos. Trans. R. Soc. Lond. B 270: 349–359.CrossRefGoogle Scholar
  51. 51.
    Almers, W., and S. R. Levinson. 1975. Tetrodotoxin binding to normal and depolarized frog muscle and the conductance of a single sodium channel J. Physiol. (Lond.) 247: 483–509.Google Scholar
  52. 52.
    Albuquerque, E. X. 1972. The mode of action of batrachotoxin. Fed. Proc. 31: 1133–1138.PubMedGoogle Scholar
  53. 53.
    Albuquerque, E. X., K. Kuba, and J. Daly. 1974. Effect of histrionicotoxin on the ionic conductance modulator of the cholinergic receptor: A quantitative analysis of the end-plate current. J. Pharmacol. Exp. Ther. 189: 513–524.PubMedGoogle Scholar
  54. 54.
    Rayner, M. D. 1972. Mode of action of ciguatoxin. Fed. Proc. 31: 1139–1145.PubMedGoogle Scholar
  55. 55.
    Romey, G., R. Chicheportiche, M. Lazdunski, H. Rochat, F. Miranda, and S. Lissitzky. 1975. Scorpion neurotoxin-A presynaptic toxin which affects both Na+ and K+ channels in axons. Biochem. Biophys. Res. Commun. 64: 115–121.PubMedCrossRefGoogle Scholar
  56. 56.
    Friess, S. L. 1972. Mode of action of marine saponins on neuromuscular tissues. Fed. Proc. 31: 1146–1149.PubMedGoogle Scholar
  57. 57.
    Seeman, P. 1972. The membrane actions of anesthetics and tranquilizers. Pharmacol. Rev. 24: 583–655.PubMedGoogle Scholar
  58. 58.
    Seeman, P. 1975. The actions of nervous system drugs on cell membranes. In: Cell Membranes. Biochemistry, Cell Biology and Pathology. G. Weissmann and R. Claiborne, eds. HP Publ., New York. pp. 239–248.Google Scholar
  59. 59.
    Seeman, P., and S. Roth. 1972. General anesthetics expand cell membranes at surgical concentrations. Biochim. Biophys. Acta 255: 171–177.PubMedCrossRefGoogle Scholar
  60. 60.
    Seeman, P. 1974. The membrane expansion theory of anesthesia: Direct evidence using ethanol and a high-precision density meter. Experientia 30: 759–760.PubMedCrossRefGoogle Scholar
  61. 61.
    Miller, K. W., W. D. M. Paton, R. A. Smith, and E. B. Smith. 1973. The pressure reversal of general anesthesia and the critical volume hypothesis. Mol. Pharmacol. 9: 131–143.PubMedGoogle Scholar
  62. 62.
    Skou, J. C. 1961. The effect of drugs on cell membranes with special reference to local anesthetics. J. Pharm. Pharmacol. 13: 204–217.CrossRefGoogle Scholar
  63. 63.
    Bianchi, C. P., and G. E. Strobel. 1968. Modes of action of local anesthetics in nerve and muscle in relation to their uptake and distribution. Trans. N.Y. Acad. Sci., Ser. II 30: 1082–1092.Google Scholar
  64. 64.
    Skou, J. C. 1957. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta 23: 394–401.PubMedCrossRefGoogle Scholar
  65. 65.
    Hokin, L. E., and J. L. Dahl. 1972. The sodium-potassium adenosine triphosphatase. In: Metabolic Pathways, Metabolic Transport, Vol. VI. L. E. Hokin, ed. Academic Press, New York. pp. 267–315.Google Scholar
  66. 66.
    Schwartz, A., G. E. Lindenmayer, and J. C. Allen. 1975. The sodium-potassium adenosine triphosphatase: Pharmacological, physiological and biochemical aspects. Pharmacol. Rev. 27: 3–134.PubMedGoogle Scholar
  67. 67.
    Askari, A., ed. 1974. Properties and functions of (Na+ + K+)-activated adenosine triphosphatase. Ann. N.Y. Acad. Sci. 242:1–741.Google Scholar
  68. 68.
    Schatzmann, H. J. 1953. Herzglycoside als hemmstoffe fur den aktiven kalium and natrium transport durch die erythrocytenmembran. Helv. Physiol. Pharmacol. Acta 11: 346–354.PubMedGoogle Scholar
  69. 69.
    Skou, J. C. 1960. Further investigations on a Mg++ + Na+ activated adenosine triphosphatase possibly related to the active linked transport of Na+ and K+ across the nerve membrane. Biochim. Biophys. Acta 42: 6–23.CrossRefGoogle Scholar
  70. 70.
    Glynn, I. M., and S. J. D. Karlish. 1975. The sodium pump. Annu. Rev. Physiol. 37: 13–55.PubMedCrossRefGoogle Scholar
  71. 71.
    Whittam, R., and A. R. Chipperfield. 1975. The reaction mechanism of the sodium pump. Biochim. Biophys. Acta 415: 149–171.PubMedCrossRefGoogle Scholar
  72. 72.
    Cattell, M., and H. Gold. 1938. Influence of digitalis glycosides on force of contraction of mammalian cardiac muscle. J. Pharmacol. Exp. Ther. 62: 116–125.Google Scholar
  73. 73.
    Cattell, M., and M. Goodell. 1937. On mechanism of action of digitalis glycosides on muscle. Science 86: 106–107.PubMedCrossRefGoogle Scholar
  74. 74.
    Repke, K. R. H. 1964. The biochemical action of digitalis. Klin. Wochenschr. 42: 157–165.PubMedCrossRefGoogle Scholar
  75. 75.
    Lee, K. S., and W. Klaus 1971. The subcellular basis for the mechanism of inotropic action of cardiac glycosides. Pharmacol. Rev. 23: 193–261.PubMedGoogle Scholar
  76. 76.
    Stein, W. D. 1967. The Movement of Molecules across Cell Membranes. Academic Press, New York.Google Scholar
  77. 77.
    Rosenberg, T., and W. Wilbrandt. 1957. Struklurabhängigkeit der hemmwirkung von phlorizin und anderen phloretinderivaten auf den glukosetransport durch die erythrocytenmembran. Helv. Physiol. Acta 15: 168–176.Google Scholar
  78. 78.
    Jervis, E. L., F. R. Johnson, M. F. Sheff, and D. H. Smyth. 1956. The effect of phlorizin on intestinal absorption and intestinal phosphatase. J. Physiol. (Lond.) 134: 675–688.Google Scholar
  79. 79.
    Chan, S. S., and W. D. Lotspeich. 1962. Comparative effects of phlorizin and phloretin on glucose transport in the cat kidney. Am. J. Physiol. 203: 1975–1979.Google Scholar
  80. 80.
    Brazeau, P. 1975. Inhibitors of tubular transport of organic compounds. In: The Pharmacological Basis of Therapeutics. L. S. Goodman and A. Gilman, eds. Macmillan, New York. pp. 860–866.Google Scholar
  81. 81.
    Beyer, K. H., H. F. Russo, E. K. Tillson, A. K. Miller, W. F. Verwey, and S. R. Gass. 1951. “Benemid,” p-(di-n-propylsulfamyl)-benzoic acid: Its renal affinity and its elimination. Am. J. Physiol. 166:625–640.Google Scholar
  82. 82.
    Goldberg, N. D., M. K. Haddox, S. E. Nicol, D. B. Glass, C. H. Sanford, F. A. Kuehl, Jr., and R. Esten-sen. 1975. Biological regulation through opposing influences of cyclic GMP and cyclic AMP: The Yin Yang hypothesis. In: Advances in Cyclic Nucleotide Research, Vol. 5. G. I. Drummond, P. Greengard, and G. A. Robison, eds. Raven Press, New York. pp. 307–330.Google Scholar
  83. 83.
    Ramwell, P. W. 1974. The Prostaglandins, Vol. 2. Plenum Press, New York.CrossRefGoogle Scholar
  84. 84.
    Rasmussen, H., P. Jensen, W. Lake, N. Friedmann, and D. B. P. Goodman. 1975. Cyclic nucleotides and cellular calcium metabolism. In: Advances in Cyclic Nucleotide Research, Vol. 5. G. I. Drummond, P. Greengard, and G. A. Robison, eds. Raven Press, New York. pp. 375–394.Google Scholar
  85. 85.
    Berridge, M. J. 1975. The interaction of cyclic nucleotides and calcium in the control of cellular activity. In: Advances in Cyclic Nucleotide Research, Vol. 6. P. Greengard and G. A. Robison, eds. Raven Press, New York. pp. 1–98.Google Scholar
  86. 86.
    Perkins, J. P. 1973. Adenyl cyclase. In: Advances in Cyclic Nucleotide Research, Vol. 3. P. Greengard and G. A. Robison, eds. Raven Press, New York. pp. 164.Google Scholar
  87. 87.
    Rodbell, M., M. C. Lin, Y. Salomon, C. Londos, J. P. Harwood, B. R. Martin, M. Rendell, and M. Berman. 1975. Role of adenine and guanine nucleotides in the activity and response of adenylate cyclase systems to hormones: Evidence for multisite transition states. In: Advances in Cyclic Nucleotide Research, Vol. 5. G. I. Drummond, P. Greengard, and G. A. Robison, eds. Raven Press, New York. pp. 3–29.Google Scholar
  88. 88.
    Cuatrecasas, P. 1975. Hormone receptors-Their function in cell membranes and some problems related to methodology. In: Advances in Cyclic Nucleotide Research, Vol. 5. G. I. Drummond, P. Greengard, and G. A. Robison, eds. Raven Press, New York. pp. 79–103.Google Scholar
  89. 89.
    Ringer, S. 1883. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J. Physiol. (Lond.) 4: 2942.Google Scholar
  90. 90.
    Rall, T. W., E. W. Sutherland, and J. Berthet. 1957. The relationship of epinephrine and glucagon to liver phosphorylase. IV. Effect of epinephrine and glucagon on the reactivation of phosphorylase in liver homogenates. J. Biol. Chem. 224: 463–475.PubMedGoogle Scholar
  91. 91.
    Rubin, R. P. 1974. Calcium and the Secretory Process. Plenum Press, New York.CrossRefGoogle Scholar
  92. 92.
    Shanes, A. M., and C. P. Bianchi. 1959. Distribution and kinetics of release of radiocalcium in tendon and skeletal muscle. J. Gen. Physiol. 42: 1123–1137.PubMedCrossRefGoogle Scholar
  93. 93.
    Bianchi, C. P., and A. M. Shanes. 1959. Calcium influx in skeletal muscle at rest, during activity, and during potassium contracture. J. Gen. Physiol. 42: 803–815.PubMedCrossRefGoogle Scholar
  94. 94.
    Bianchi, C. P. 1968. Cell Calcium. Butterworth, London.Google Scholar
  95. 95.
    Schramm, M., and Z. Selinger. 1975. The functions of cyclic AMP and calcium as alternative second messengers in parotid gland and pancreas. J. Cyclic Nucleotide Res. 1: 181–192.PubMedGoogle Scholar
  96. 96.
    Leslie, B.A., J. W. Putney, Jr., and J. M. Sherman 1976. u-Adrenergic, 13-adrenergic and cholinergic mechanisms for amylase secretion by rat parotid gland in vitro. J. Physiol. (Loud.)260:351–370.Google Scholar
  97. 97.
    Putney, J. W., Jr., S. J. Weiss, B. A. Leslie, and S. H. Marier. 1977. Is calcium the final mediator of exocytosis in the parotid gland? J. Pharmacol. Exp. Ther. 203: 144–155.PubMedGoogle Scholar
  98. 98.
    Putney, J. W., Jr. 1976. Stimulation of “Ca influx in rat parotid gland by carbachol. J. Pharmacol. Exp. Ther. 199: 526–537.PubMedGoogle Scholar
  99. 99.
    Ashley, C. C., and E. B. Ridgway. 1970. On the relationship between membrane potential, calcium transient and tension in single barnacle muscle fibres. J. Physiol. (Lond.) 209: 105–130.Google Scholar
  100. 100.
    Devore, D. I., and W. L. Nastuk. 1975. Effects of “calcium ionophore” X537A on frog skeletal muscle. Nature 253: 644–646.PubMedCrossRefGoogle Scholar
  101. 101.
    Bianchi, C. P. 1975. Calcium fluxes in skeletal muscle and integration of metabolic and contractile events. In: Concepts of Membranes in Regulation and Excitation. M. Rocha e Silva and G. Suarez-Kurtz, eds. Raven Press, New York. pp. 1–6.Google Scholar
  102. 102.
    Winegrad, S., and A. M. Shanes. 1962. Calcium flux and contractility in guinea-pig atria. J. Gen. Physiol. 45: 371–394.PubMedCrossRefGoogle Scholar
  103. 103.
    Holland, D. R., M. I. Steinberg, and W. McD. Armstrong. 1975. A23187: A calcium ionophore that directly increases cardiac contractility. Proc. Soc. Exp. Biol. Med. 148: 1141–1145.PubMedGoogle Scholar
  104. 104.
    Durbin, R. P., and D. H. Jenkinson. 1961. The calcium dependence of tension development in depolarized smooth muscle. J. Physiol. (Lond.) 157: 90–96.Google Scholar
  105. 105.
    van Breemen, C., and E. E. Daniel. 1966. The influence of high potassium depolarization and acetylcholine on calcium exchange in the rat uterus. J. Gen. Physiol. 49: 1299–1317.PubMedCrossRefGoogle Scholar
  106. 106.
    Pressman, B. C. 1973. Properties of ionophores with broad range cation selectivity. Fed. Proc. 32: 1698 1703.Google Scholar
  107. 107.
    Swamy, V. C., M. Ticku, C. R. Triggle, and D. J. Triggle. 1975. The action of the ionophores, X-537A and A-23187, on smooth muscle. Can. J. Physiol. Pharmacol. 53: 1108–1114.PubMedCrossRefGoogle Scholar
  108. 108.
    Douglas, W. W., and R. P. Rubin. 1961. The role of Ca in the secretory response of the adrenal medulla to acetylcholine. J. Physiol. (Lond.) 159: 40–57.Google Scholar
  109. 109.
    Douglas, W. W., and A. M. Poisner. 1962. On the mode of action of acetylcholine in evoking adrenal medullary secretion: Increased uptake of calcium during the secretory response. J. Physiol. (Lond.) 162: 385–392.Google Scholar
  110. 110.
    Ricci, A., Jr., K. M. Sanders, J. Portmore, and W. G. Van der Kloot. 1975. Effects of the ionophores, X-537A and A-23187, on catecholamine release from the in vitro frog adrenal. Life Sci. 16: 177–184.PubMedCrossRefGoogle Scholar
  111. 111.
    Holz, R. W. 1975. The release of dopamine from synaptosomes from rat striatum by the ionophores X537A and A23187. Biochim. Biophys. Acta 375: 138–152.PubMedCrossRefGoogle Scholar
  112. 112.
    Garcia, A. G., S. M. Kirpekar, and J. C. Prat. 1975. A calcium ionophore stimulating the secretion of catecholamines from the cat adrenal. J. Physiol. (Lond.) 244: 253–262.Google Scholar
  113. 113.
    Kirpekar, S. M., and Y. Misu. 1967. Release of noradrenaline by splenic nerve stimulation and its dependence on calcium. J. Physiol. (Lond.) 188: 219–234.Google Scholar
  114. 114.
    Thoa, N. B., J. L. Costa, J. Moss, and I. J. Kopin. 1974. Mechanism of release of norepinephrine from peripheral adrenergic neurones by the calcium ionophores X537A and A23187. Life Sci. 14: 1705–1719.PubMedCrossRefGoogle Scholar
  115. 115.
    Locke, F. S. 1894. Notiz uber den Einfluss physiologischer Kochsalzlösung auf die elektrische Erregbarkeit von Muskel und Nerv. Zentralbi. Physiol. 8: 166–167.Google Scholar
  116. 116.
    Katz, B., and R. Miledi. 1965. The effect of calcium on acetylcholine release from motor nerve terminals. Proc. R. Soc. Lond. B. 161: 496–503.PubMedCrossRefGoogle Scholar
  117. 117.
    Kita, H., and W. Van der Kloot. 1974. Calcium ionophore X-537A increases spontaneous and phasic quantal release of acetylcholine at frog neuromuscular junction. Nature 250: 658–660.PubMedCrossRefGoogle Scholar
  118. 118.
    Douglas, W. W., and A. M. Poisner. 1964. Stimulus-secretion coupling in a neurosecretory organ: The role of calcium in the release of vasopressin from the neurohypophysis. J. Physiol. (Lond.) 172: 1–18.Google Scholar
  119. 119.
    Douglas, W. W., and A. M. Poisner. 1964. Calcium movement in the neurohypophysis of the rat and its relation to the release of vasopressin. J. Physiol. (Loud.) 172: 19–30.Google Scholar
  120. 120.
    Nakazato, Y., and W. W. Douglas. 1974. Vasopressin release from the isolated neurohypophysis induced by a calcium ionophore, X-537A. Nature 249: 479–481.PubMedCrossRefGoogle Scholar
  121. 121.
    Birmingham, M. K., E. Kurlents, R. Lane, B. Muhlstock, and H. Traikov. 1960. Effects of calcium on the potassium and sodium content of rat adrenal glands, on the stimulation of steroid production by adenosine 3’,5’-monophosphate, and on the response of the adrenal to short contact with ACTH. Can. J. Biochem. Physiol. 38: 1077–1085.CrossRefGoogle Scholar
  122. 122.
    Jaanus, S. D., and R. P. Rubin. 1971. The effect of ACTH on calcium distribution in the perfused cat adrenal gland. J. Physiol. (Lond.) 213: 581–598.Google Scholar
  123. 123.
    Gesschwind, I. 1969. Mechanism of action of releasing factors. In: Frontiers in Neuroendocrinology. W. F. Ganong and L. Martini, eds. Oxford Univ. Press, New York. pp. 389–431.Google Scholar
  124. 124.
    Milligan, J. V., and J. Kraicer. 1972. Purified growth hormone releasing factor increases “Ca uptake into pituitary cells. Can. J. Physiol. Pharmacol. 50: 613617.Google Scholar
  125. 125.
    Hales, C. N., and R. D. G. Milner. 1968. Cations and the secretion of insulin from rabbit pancreas in vitro. J. Physiol. (Lond.) 199: 177–187.Google Scholar
  126. 126.
    Hellman, B., J. Sehlin, and I.-B. Täljadal. 1971. Calcium uptake by pancreatic ß-cells as measured with the aid of “Ca and mannitol-3H. Am. J. Physiol. 221: 1795–1801.PubMedGoogle Scholar
  127. 127.
    Hellman, B. 1975. Modifying actions of calcium ionophores on insulin release. Biochim. Biophys. Acta 399: 157–169.PubMedCrossRefGoogle Scholar
  128. 128.
    Hokin, L. E. 1966. Effects of calcium omission on acetylcholine-stimulated amylase secretion and phospholipid synthesis in pigeon pancreas slices. Biochim. Biophys. Acta 115: 219–221.PubMedCrossRefGoogle Scholar
  129. 129.
    Petersen, O. H., and N. Ueda. 1976. Pancreatic acinar cells: The role of calcium in stimulus-secretion cou- 145. pling. J. Physiol. (Lond.) 254: 583–606.Google Scholar
  130. 130.
    Heisler, S., and G. Grondin. 1973. Effect of lanthanum on 45Ca flux and secretion of protein from rat exocrine pancreas. Life Sci. 13: 783–794. 146.Google Scholar
  131. 131.
    Chandler, D. E., and J. A. Williams. 1974. Pancreatic acinar cells: Effects of lanthanum ions on amylase release and calcium ion fluxes. J. Physiol. (Lond.) 243: 831–846. 147.Google Scholar
  132. 132.
    Williams, J. A., and M. Lee. 1974. Pancreatic acinar cells: Use of a Ca++ ionophore to separate enzyme release from the earlier steps in stimulus-secretion 148. coupling. Biochem. Biophys. Res. Commun. 60: 542548.Google Scholar
  133. 133.
    Douglas, W. W., and A. M. Poisner. 1963. The influ- 149. ence of calcium on the secretory response of the submaxillary gland to acetylcholine or to noradrenaline. J. Physiol. (Lond.) 165: 528–541.Google Scholar
  134. 134.
    Putney, J. W., Jr. 1976. Biphasic modulation of potassium permeability in rat parotid gland by carbachol 150. and phenylephrine. J. Pharmacol. Exp. Ther. 198: 375–384.PubMedGoogle Scholar
  135. 135.
    Selinger, Z., S. Batzri, S. Eimerl, and M. Schramm. 1973. Calcium and energy requirements for K+ release 151. mediated by the epinephrine a-receptor in rat parotid slices. J. Biol. Chem. 248: 369–372.PubMedGoogle Scholar
  136. 136.
    Rossignol, B., G. Herman, A. M. Chambaut, and G. 152. Keryer. 1974. The calcium ionophore A23187 as a probe for studying the role of Cat+ ions in the mediation of carbachol effects on rat salivary glands: Pro- 153. tein secretion and metabolism of phospholipids and glycogen. FEBS Lett. 43: 241–246.PubMedCrossRefGoogle Scholar
  137. 137.
    Butcher, F. R. 1975. The role of calcium and cyclic 154. nucleotides in a-amylase release from slices of rat parotid: Studies with the divalent cation ionophore A- 155. 23187. Metabolism 24: 409–418.PubMedCrossRefGoogle Scholar
  138. 138.
    Douglas, W. W. 1968. The first Gaddum memorial 156. lecture. Stimulus-secretion coupling: The concept and clues from chromaffin and other cells. Br. J. Pharmacol. 34: 451–474.PubMedCrossRefGoogle Scholar
  139. 139.
    Dahlquist, R., and B. Diamant. 1972. Relation of uptake of sodium and calcium to ATP-induced hista- 158. mine release from rat mast cells. Fifth International Congress on Pharmacology, San Francisco, July 2328. p. 50 (Abstr.).Google Scholar
  140. 140.
    Cochrane, D. E., and W. W. Douglas. 1974. Calcium- 159. induced extrusion of secretory granules (exocytosis) in mast cells exposed to 48/80 or the ionophores A23187 and X-537A. Proc. Natl. Acad. Sci. U.S.A. 71: 408–412. 160.Google Scholar
  141. 141.
    Kroeger, E. A., J. M. Marshall, and C. P. Bianchi. 1975. Effect of isoproterenol and D-600 on calcium movements in rat myometrium. J. Pharmacol. Exp. 161. Ther. 193: 309–316.Google Scholar
  142. 142.
    Baker, P. F. 1972. Transport and metabolism of calcium ions in nerve. Prog. Biophys. Mol. Biol. 24: 177–223.PubMedCrossRefGoogle Scholar
  143. 143.
    Shanes, A. M., and C. P. Bianchi. 1960. Radiocalcium 162. release by stimulated and potassium-treated sartorius muscles of the frog. J. Gen. Physiol. 43: 481–493.PubMedCrossRefGoogle Scholar
  144. 144.
    Atwater, I., E. Rojas, and J. Vergara. 1974. Calcium influxes and tension development in perfused single 163. barnacle muscle fibres under membrane potential control. J. Physiol. (Lond.) 243: 523–552.Google Scholar
  145. 145.
    Bianchi, C. P. 1975. Cellular pharmacology of contraction of skeletal muscle. In: Cellular Pharmacology of Excitable Tissues. T. Narahashi, ed. Thomas, Springfield, Illinois. pp. 485–519.Google Scholar
  146. 146.
    Argent, B. E., R. M. Case, and T. Scratcherd. 1971. Stimulation of amylase secretion from the perfused cat pancreas by potassium and other alkali metal ions. J. Physiol. (Land.) 216: 611–624.Google Scholar
  147. 147.
    Somlyo, A. P. 1975. Vascular smooth muscle. In: Cellular Pharmacology of Excitable Tissues. T. Narahashi, ed. Thomas, Springfield, Illinois. pp. 360–407.Google Scholar
  148. 148.
    Caldwell, P. C. 1970. Calcium chelation and buffers. In: Calcium and Cellular Function. A. W. Cuthbert, ed. St. Martin’s Press, New York. pp. 10–16.Google Scholar
  149. 149.
    Rojas, E., R. E. Taylor, I. Atwater, and F. Bezanilla. 1969. Analysis of the effects of calcium or magnesium on voltage-clamp currents in perfused squid axons bathed in solutions of high potassium. J. Gen. Physiol. 54: 532–552.PubMedCrossRefGoogle Scholar
  150. 150.
    Friedman, H. A., C. P. Bianchi, and S. J. Weiss. 1974. Structural aspects of the effects of ethyl aminobenzoates on caffeine contracture. J. Pharmacol. Exp. Ther. 189: 423–433.PubMedGoogle Scholar
  151. 151.
    Feinstein, M. B. 1966. Inhibition of contraction and calcium exchangeability in rat uterus by local anesthetics. J. Pharmacol. Exp. Ther. 152:516–524.Google Scholar
  152. 152.
    Weiss, G. B. 1970. On the site of action of lanthanum in frog sartorius muscle. J. Pharmacol. Exp. Ther. 174: 517–526.Google Scholar
  153. 153.
    Goodman, F. R., and G. B. Weiss. 1971. Dissociation by lanthanum of smooth muscle responses to potassium and acetylcholine. Am. J. Physiol. 220:759–766.Google Scholar
  154. 154.
    Cellular pharmacology of lanthanum. Annu. Rev. Pharmacol. 14: 343–354.Google Scholar
  155. 155.
    Miledi, R. 1971. Lanthanum ions abolish the “calcium response” of nerve terminals. Nature 229:410–411.Google Scholar
  156. 156.
    Borowicz, J. L. 1972. Effect of lanthanum on catecholamine release from adrenal medulla. Life Sci. 11: 959–964.Google Scholar
  157. 157.
    Trautwein, W. 1973. Membrane currents in cardiac muscle fibers. Physiol. Rev. 53: 793–835.Google Scholar
  158. 158.
    Mascher, D. 1970. Electrical and mechanical responses from ventricular muscle fibers after inactivation of the Na carrying system. Pfluegers Arch. Ges. Physiol. 317: 359–372.CrossRefGoogle Scholar
  159. 159.
    Mascher, D. 1971. Electrical and mechanical events in depolarized cardiac muscle fibers during low sodium perfusion. Pfluegers Arch. Ges. Physiol. 323: 284–296.Google Scholar
  160. 160.
    Morad, M., and Y. Goldman 1976. Clarification of membrane conductance measurements in ventricular heart muscle. J. Mol. Cell. Cardiol. 8: 169–172.PubMedCrossRefGoogle Scholar
  161. 161.
    Kolhardt, M., B. Bauer, H. Krause, and A. Fleckenstein. 1972. Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibers by the use of specific inhibitors. Pfluegers Arch. Ges. Physiol. 335: 309–322.CrossRefGoogle Scholar
  162. 162.
    Golenhofen, K. 1976. Theory of P and T systems for calcium activation in smooth muscle. In: Physiology of Smooth Muscle. E. Bülbring and M. F. Shuba, eds. Raven Press, New York. pp. 197–202.Google Scholar
  163. 163.
    Boev, K., K. Golenhofen, and J. Lukanow 1976. Selective suppression of phasic and tonic activation mechanisms in stomach smooth muscle. In: Physiology of Smooth Muscle. E. Bülbring and M. F. Shuba, eds. Raven Press, New York. pp. 203–208.Google Scholar
  164. 164.
    Baker, P. F., H. Meves, and E. B. Ridgway. 1973. Effects of manganese and other agents on the calcium uptake that follows depolarization of squid axons. J. Physiol. (Lond.) 231: 511–526.Google Scholar
  165. 165.
    Thorn, N. A. 1974. Role of calcium in secretory processes. In: Secretory Mechanisms of Exocrine Glands. N. A. Thorn and O. H. Petersen, eds. Munksgaard, Copenhagen. pp. 305–326.Google Scholar
  166. 166.
    Corrado, A. P., W. A. Prado, and I. P. de Morais. 1975. Competitive antagonism between calcium and aminoglycoside antibiotics in skeletal and smooth muscles. In: Concepts of Membranes in Regulation and Excitation. M. Rocha e Silva and G. Suarez-Kurtz, eds. Raven Press, New York. pp. 201–215.Google Scholar
  167. 167.
    Goodman, F. R., G. B. Weiss, and H. R. Adams. 1974. Alterations by neomycin of 45Ca movements and contractile responses in vascular smooth muscle. J. Pharmacol. Exp. Ther. 188: 472–480.PubMedGoogle Scholar
  168. 168.
    Adams, H. R., and F. R. Goodman 1975. Differential inhibitory effect of neomycin on contractile responses of various canine arteries. J. Pharmacol. Exp. Ther. 193: 393–402.PubMedGoogle Scholar
  169. 169.
    Pressman, B. C., E. J. Harris, W. S. Jagger, and J. H. Johnson. 1967. Antibiotic-mediated transport of alkali ions across lipid barriers. Proc. Natl. Acad. Sci. U.S.A. 58: 1949–1956.PubMedCrossRefGoogle Scholar
  170. 170.
    Callingham, B. A. 1974. Drugs and Transport Processes. Univ. Park Press, Baltimore.Google Scholar
  171. 171.
    Pressman, B. C. 1972. Carboxylic ionophores as mobile carriers for divalent ions. In: The Role of Membranes in Metabolic Regulation. M. A. Mehlman and R. W. Hanson, eds. Academic Press, New York. pp. 149–164.CrossRefGoogle Scholar
  172. 172.
    Reed, P. W., and H. A. Lardy. 1972. A-23187: A divalent cation ionophore. J. Biol. Chem. 247: 6970–6977.PubMedGoogle Scholar
  173. 173.
    Douglas, W. W. 1974. Exocytosis and the exocytosisvesiculation sequence: With special reference to neurohypophysis, chromaffin and mast cells, calcium and calcium ionophores. In: Secretory Mechanisms of Exocrine Glands. N. A. Thorn and O. H. Petersen, eds. Munksgaard, Copenhagen. pp. 116–129.Google Scholar
  174. 174.
    Douglas, W. W. 1974. Involvement of calcium in exocytosis and the exocytosis-vesiculation sequence. Biochem. Soc. Symp. 39: 1–28.PubMedGoogle Scholar
  175. 175.
    Cochrane, D. E., W. W. Douglas, T Mouri, and Y. Nakazato. 1975. Calcium and stimulus-secretion coupling in the adrenal medulla: Contrasting stimulating effects of the ionophores X-537A and A23187 on catécholamine output. J. Physiol. (Lond.) 252: 363–378.Google Scholar
  176. 176.
    Johnson, R. G., and A. Scarpa. 1974. Catecholamine equilibration gradients of isolated chromaffin vesicles by the ionophore X-537A. FEBS Lett. 47: 117–121.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • James W. PutneyJr.
    • 1
  • Amir Askari
    • 2
  1. 1.Department of PharmacologyWayne State University School of MedicineDetroitUSA
  2. 2.Department of Pharmacology and TherapeuticsMedical College of OhioToledoUSA

Personalised recommendations