The Interaction of Hormones with Biological Membranes

  • Darrell D. Fanestil

Abstract

Major advances in our knowledge on the interaction of hormones with biological membranes have occurred in the past few years. Three general classes of hormones have been studied in considerable detail: steroid hormones, peptide hormones, and neurotransmitters. In addition, studies on the interaction of prostaglandins and opiatelike compounds with membranes are now appearing. Steroid hormones, the first to be studied in detail, react initially with macromolecules within the cytoplasmic compartment (cytosol) of the cell. Thus steroids do not exert their biological actions through interaction with components of, or in, a bilayer or cellular membrane, and therefore are mentioned only occasionally in this chapter. Excellent reviews(1,2) and monographs(3) are available on steroid hormone action.

Keywords

Hormone Receptor Insulin Receptor Adenyl Cyclase Peptide Hormone Hormone Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O’Malley, B. W., and A. R. Means, ed. 1973. Receptors for reproductive hormones. In: Advances in Experimental Medicine and Biology, Vol. 36. Plenum Press, New York.Google Scholar
  2. 2.
    Cake, M. H., and G. Litwack. 1975. The glucocorticoid receptor. In: Biochemical Actions of Hormones, Vol. III. Academic Press, New York. pp. 317–390.CrossRefGoogle Scholar
  3. 3.
    King, R. J. B., and W. I. P. Mainwaring. 1974. Steroid-Cell Interactions. Univ. Park Press, Baltimore.Google Scholar
  4. 4.
    Roth, J., C. R. Kahn, M. A. Lesniak, P. Gorden, P. DeMeyts, K. Megyesi, D. M. Neville, Jr., J. R. Gavin III, A. H. Soll, P. Freychet, I. D. Goldfine, R. S. Bar, and J. A. Archer. 1975. Receptors for insulin, NSILA-s, and growth hormone: Applications to disease states in man. Recent Prog. Horm. Res. 31: 95–139.PubMedGoogle Scholar
  5. 5.
    Cuatrecasas, P., M. D. Hollenberg, K.-J. Chang, and V. Bennett. 1975. Hormone receptor complexes and their modulation of membrane function. Recent Prog. Horm. Res. 31: 37–94.PubMedGoogle Scholar
  6. 6.
    Kahn, C. R. 1976. Membrane receptors for hormones and neurotransmitters. J. Cell Biol. 70: 261–286.PubMedCrossRefGoogle Scholar
  7. 7.
    Westphal, U. 1971. High-affinity binding of estradiol and testosterone to serum proteins. In: Monographs on Endocrinology, Vol. 4: Steroid-Protein Interactions. U. Westphal, ed. Springer-Verlag, Berlin and New York.Google Scholar
  8. 8.
    Fanestil, D. D., and I. S. Edelman. 1966. Characteristics of the nuclear receptors for aldosterone. Proc. Natl. Acad. Sci. U.S.A. 56: 872–879.PubMedCrossRefGoogle Scholar
  9. 9.
    Fressinand, P. H., P. Corvol, J. P. Frenoy, and J. Menard. 1973. Purification of 125I-labeled lysine-vasopressin by affinity chromatography on sepharosebound neurophysins. Biochim. Biophys. Acta 317: 572576.Google Scholar
  10. 10.
    Bockaert, J., C. Roy, R. Rajerison, and S. Jard. 1973. Specific binding of 3H-lysine-vasopressin to pig kidney plasma membranes. J. Biol. Chem. 248: 5922–5931.PubMedGoogle Scholar
  11. 11.
    Pradelles, P., J. L. Morgat, P. Fromageot, M. Camier, D. Bonne, P. Cohen, J. Bockaert, and S. Jard. 1972. Tritum labelling of 8-lysine vasopressin and its purification by affinity chromatography on sepharose bound neurophysins. FEBS Lett. 26: 189–192.PubMedCrossRefGoogle Scholar
  12. 12.
    O’Brien, R. D., M. E. Eldefrawl, and A. T. Eldefrawl, 1972. Isolation of acetylcholine receptors. Pharmacol Rev. 12: 19–34.CrossRefGoogle Scholar
  13. 13.
    Lafkowitz, R. J. 1976. Beta-adrenergic receptors: Recognition and regulation. N. Engl. J. Med. 295: 323–328.CrossRefGoogle Scholar
  14. 14.
    Williams, L. T., and R. J. Lefkowitz. 1976. Alphaadrenergic receptor identification by 3H-dihydroergocryptine binding. Science 192: 791–793.PubMedCrossRefGoogle Scholar
  15. 15.
    Chamness, G. C., and W. L. McGuire. 1975. Scatchard plots: Common errors in correction and interpretation. Steroids 26: 538–542.PubMedCrossRefGoogle Scholar
  16. 16.
    Schwarz, G. 1976. Some general aspects regarding the interpretation of binding data by means of a Scatchard plot. Biophys. Struct. Mech. 2: 2–12.CrossRefGoogle Scholar
  17. 17.
    Boeynaems, J. M., and J. E. Dumont. 1975. Quantitative analysis of the binding of ligands to their receptors. J. Cyclic Nucleotide Res. 1:123–142.Google Scholar
  18. 18.
    Weder, H. G., J. Schildknecht, R. A. Lutz, and P. Kesselring. 1974. Determination of binding parameters from Scatchard plots. Eur. J. Biochem. 42: 475–481.PubMedCrossRefGoogle Scholar
  19. 19.
    Swillens, S., and J. E. Dumont. 1975. A pitfall in the interpretation of data on ligand-protein interaction. Biochem. J. 149: 779–782.PubMedGoogle Scholar
  20. 20.
    Baulieu, E. E., J. P. Raynaud, and E. Milgrom. 1970, Measurement of steroid binding proteins. Karolinska Symposia on Research Methods in Reproductive Endocrinology. 2nd Symposium: Steroid Assay by Protein Binding. pp. 104–121.Google Scholar
  21. 21.
    Ketelslegers, J.-M., G. D. Knott, and K. J. Catt. 1975. Kinetics of gonadotropin binding by receptors of the rat testis. Analysis by a nonlinear curve-fitting method. Biochemistry 14: 3075–3083.PubMedCrossRefGoogle Scholar
  22. 22.
    Anderson, N. S., III, and D. D. Fanestil. 1976. Corticoid receptors in rat brain: Evidence for an aldosterone receptor. Endocrinology 98: 676–684.PubMedCrossRefGoogle Scholar
  23. 23.
    DeMeyts, P., J. Roth, D. M. Neville, Jr., J. R. Gavin, III, and M. A. Lesniak. 1973. Insulin interactions with its receptors: Experimental evidence for negative cooperativity. Biochem. Biophys. Res. Commun. 55: 154161.Google Scholar
  24. 24.
    DeMeyts, P., A. R. Bianco, and J. Roth. 1976. Site-site interactions among insulin receptors. Characterization of the negative cooperativity. J. Biol. Chem. 251: 1877–1888.PubMedGoogle Scholar
  25. 25.
    Roy, C., R. Rajerison, J. Bockaert, and S. Jard. 1975. Solubilization of the [8-lysine] vasopressin receptor and adenylate cyclase from pig kidney plasma membranes. J. Biol. Chem. 250: 7885–7893.PubMedGoogle Scholar
  26. 26.
    Cuatrecasas, P., and M. D. Hollenberg. 1975. Binding of’ insulin and other hormones to nonreceptor materials: Saturability, specificity and apparent “negative cooperativity.” Biochem. Biophys. Res. Commun. 62: 31–41.PubMedCrossRefGoogle Scholar
  27. 27.
    Terris, S., and D. F. Steiner. 1975. Binding and degradation of 125I-insulin by rat hepatocytes. J. Biol. Chem. 250: 8389–8398.PubMedGoogle Scholar
  28. 28.
    DeMeyts, P. 1976. Cooperative properties of hormone receptors in cell membranes. J. Supramol. Struct. 4: 241–258.CrossRefGoogle Scholar
  29. 29.
    Moore, W. M., L. A. Holladay, D. Purett, and R. N. Brady. 1974. On the conformation of the acetylcholine receptor protein from Torpedo Nobiliana. FEBS Lett. 45: 145–149.CrossRefGoogle Scholar
  30. 30.
    Dufau, M. L., D. W. Ryan, A. J. Bankal, and K. J. Catt. 1975. Gonadotropin receptors. Solubilization and purification by affinity chromatography. J. Biol. Chem. 250: 4822–4824.PubMedGoogle Scholar
  31. 31.
    Tate, R. L., J. M. Holmes, L. D. Kohn, and R. J. Winand. 1975. Characteristics of solubilized thyrotropin receptor from bovine thyroid plasma membranes. J. Biol. Chem. 250: 6527–6533.PubMedGoogle Scholar
  32. 32.
    Barden, N., and F. Labrie. 1973. Receptor for thyrotropin-releasing hormone in plasma membranes of bovine anterior pituitary gland. J. Biol. Chem. 248: 76017606.Google Scholar
  33. 33.
    Michell, R. H., 1975. Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta 415: 81–147.PubMedCrossRefGoogle Scholar
  34. 34.
    Raff, M. 1976. Self-regulation of membrane receptors. Nature 259: 265–266.CrossRefGoogle Scholar
  35. 35.
    Gavin, J. R., III, J. Roth, D. M. Neville, Jr., P. DeMeyts, and D. N. Buell. 1974. Insulin-dependent regulation of insulin receptor concentrations: A direct demonstration in cell culture. Proc. Natl. Acad. Sci. U.S.A. 71: 84–88.PubMedCrossRefGoogle Scholar
  36. 36.
    Hinkle, P. M., and A. H. Tashjian, Jr. 1975. Thyrotropin-releasing hormone regulates the number of its own receptors in the GH3 strain of pituitary cells in culture. Biochemistry 14: 3845–3851.PubMedCrossRefGoogle Scholar
  37. 37.
    Kahn, C. R., D. M. Neville, Jr., and J. Roth. 1973. Insulin-receptor interaction in the obese hyperglycemic mouse. J. Biol. Chem. 248: 244.PubMedGoogle Scholar
  38. 38.
    Chang, K.-J., D. Huang, and P. Cuatrecasas. 1975. The defect in insulin receptors in obese hyperflycemic mice: A probable accompaniment of more generalized alterations in membrane glycoproteins. Biochem. Biophys. Res. Commun. 64: 566–573.PubMedCrossRefGoogle Scholar
  39. 39.
    Singer, S. J. 1976. The fluid mosaic model of membrane structure. Some applications to ligand-receptor and cell-cell interactions. In: Surface Membrane Recep- tors. R. A. Bradshaw, W. A. Frazier, R. C. Merrell, D. I. Gottlieb, and R. A. Hogue-Angeletti, eds. Plenum Press, New York. pp. 1–24.Google Scholar
  40. 40.
    Jarrett, L., and R. M. Smith. 1975. Ultrastructural localization of insulin receptors on adipocytes. Proc. Natl. Acad. Sci. U.S.A. 72: 3526–3530.CrossRefGoogle Scholar
  41. 41.
    Posner, B. I., P. A. Kelly, and H. G. Friesen. 1974. Induction of lactogenic receptor in rat liver: Influence of estrogen and the pituitary. Proc. Natl. Acad. Sci. U.S.A. 71: 2407–2410.PubMedCrossRefGoogle Scholar
  42. 42.
    Siegel, M. I., and P. Cuatrecasas. 1975. Membrane receptors and the mechanism of hormone action. Cellular membranes and tumor cell behavior. 28th Annual Symposium on Fundamental Cancer Research. Williams & Wilkins, Baltimore.Google Scholar
  43. 43.
    Helmreich, E. J. M. 1976. Hormone-receptor interactions. FEBS Lett. 61: 1–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Jacobs, S., and P. Cuatrecasas. 1976. The mobile receptor hypothesis and “cooperativity” of hormone binding. Biochim. Biophys. Acta 433: 482–495.PubMedCrossRefGoogle Scholar
  45. 45.
    Singer, S. J., and G. L. Nicolson. 1972. The fluid mosaic model of the structure of cell membranes. Science 175: 720–731.PubMedCrossRefGoogle Scholar
  46. 46.
    Glossmann, H., A. Baukal, and K. J. Catt. 1974. Angiotensin II receptors in bovine adrenal cortex: Modification of angiotensin II binding by guanyl nucleotides. J. Biol. Chem. 249: 664–666.PubMedGoogle Scholar
  47. 47.
    Birnbaumer, L., and P.-C. Yang. 1974. Studies on receptor-mediated activation of adenyl cyclases. II. Nucleotide and nucleoside regulation of the activities of the beef renal medullary adenyl cyclase and their stimulation by neurohypophyseal hormones. J. Biol. Chem. 249: 7857–7866.PubMedGoogle Scholar
  48. 48.
    Solomon. Y., M. C. Lin, C. Londos, M. Rendell, and M. Rodbell. 1975. The hepatic adenyl cyclase system. I. Evidence for transition states and structural requirements for guanine nucleotide activation. J. Biol. Chem. 250: 4239–4245.Google Scholar
  49. 49.
    Flier, J. S., C. R. Kahn, J. Roth, and R. S. Bar. 1975. Antibodies that impair insulin receptor binding in an unusual diabetic syndrome with severe insulin resistance. Science 190: 63–65.PubMedCrossRefGoogle Scholar
  50. 50.
    Kahn, C. R., J. S. Flier, R. S. Bar, J. A. Archer, P. Gordon, M. M. Martin, and J. Roth. 1976. The syndromes of insulin resistance and acanthosis nigricans. N. Engl. J. Med. 294: 739–745.PubMedCrossRefGoogle Scholar
  51. 51.
    Patrick, J., and J. Lindstrom. 1973. Autoimmune response to acetylcholine receptor. Science 180: 871872.Google Scholar
  52. 52.
    Bender, A. N., S. P. Ringel, W. K. Engel, M. P. Daniels, and Z. Vogel. 1973. Myasthenia gravis: A serum factor blocking acetylcholine receptors of the human neuromuscular junction. Lancet 1: 607–609.Google Scholar
  53. 53.
    Aharonov, A., O. Abramsky, R. Tarrab-Hazdai, and S. Fuchs. 1975. Hormonal antibodies to acetylcholine receptor in patients with myasthenia gravis. Lancet 1: 340–342.CrossRefGoogle Scholar
  54. 54.
    Smith, B. R., and R. Hall. 1974. 1974. Thyroid-stimulating immunoglobulins in Grave’s disease. Lancet 2: 427–431.Google Scholar
  55. 55.
    Mukhtar, E. D., B. R. Smith, G. A. Pyle, R. Hall, and P. Vice. 1975. Relation of thyroid-stimulating immunoglobulins to thyroid function and effects of surgery, radioiodine, and antithyroid drugs. Lancet 1: 713–715.PubMedCrossRefGoogle Scholar
  56. 56.
    Rao, Ch. V. 1976. Prostaglandin F2 a receptors in 69. bovine corpus luteum cell membranes. Biochim. Biophys. Acta 436: 170–182.PubMedCrossRefGoogle Scholar
  57. 57.
    Hammarström, S., W. S. Powell, U. Kyldén, and B. Sammuelsson. 1976. Some properties of a prostaglandin F2 a receptor in corpora lutea. Adv. Prostagland. Thrombox. Res. 1: 235–246.Google Scholar
  58. 58.
    Rao, Ch. V. 1976. Discrete prostaglandin receptors in the outer cell membrane of bovine corpora lutea. Adv. Prostagland. Thrombox. Res. 1: 247–258.Google Scholar
  59. 59.
    Schillinger, E., and G. Prior. 1976. Characteristics of prostaglandin receptor sites in human uterine tissue. Adv. Prostagland. Thrombox. Res. 1: 259–263.Google Scholar
  60. 60.
    Pert, C. B., G. Pasternak, and S. H. Snyder. 1973. Opiate agonists and antagonists discriminated by receptor binding in brain. Science 182: 1359–1361.PubMedCrossRefGoogle Scholar
  61. 61.
    Goldstein, A., 1976. Opioid peptides (endorphins) in pituitary and brain. Science 193: 1081–1086.PubMedCrossRefGoogle Scholar
  62. 62.
    Soloff, M., T. Swartz, M. Morrison, and M. Saffran. 1973. Oxytocin receptors: Oxytocin analogues, but not prostaglandins, compete with 3H-osytocin for uptake by rat uterus. Endocrinology 92: 104–107.PubMedCrossRefGoogle Scholar
  63. 63.
    Lefkowitz, R. J., J. Roth, W. Pricer, and I. Pastan. 1970. ACTH receptors in the adrenal: Specific binding of ACTH-l25í and its relation to adenyl cyclase. Proc. Natl. Acad. Sci. U.S.A. 65: 745–752.PubMedCrossRefGoogle Scholar
  64. 64.
    Douglas, J., S. Saltman, P. Fredlund, T. Kondo, and K. J. Catt. 1976. Receptor binding of angiotensin II and antagonists. Correlation with aldosterone production by isolated canine adrenal glomerulosa cells. Circ. Res., Suppl. II, 38: 108–112.Google Scholar
  65. 65.
    Marx, S. J., C. Woodward, G. D. Aurbach, H. Gloss-mann, and H. T. Keutmann. 1973. Renal receptors for calcitonin: Binding and degradation of hormone. J. Biol. Chem. 248: 4797–4802.PubMedGoogle Scholar
  66. 66.
    Marx, S. J., G. D. Aurbach, J. R. Gavin, III, and D. W. Buell. 1974. Calcitonin receptors in cultured human lymphocytes. J. Biol. Chem. 249: 6812–6816.Google Scholar
  67. 67.
    Eldefrawi, M. E., A. T. Eldefrawi, and A. E. Shamoo. 1975. Molecular and functional properties of the acetylcholine-receptor. Ann. N.Y. Acad. Sci. 264:183–202. 79. amer, and M. Rodbell. 1971. The glucagon-sensitiveGoogle Scholar
  68. 68.
    Pohl, S. L., H. M. J. Krans, V. Kozyreff, L. Birnbuamer, and M. Rodbell. 1971. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. J. Biol. Chem. 246: 4447–4454.PubMedGoogle Scholar
  69. 69.
    Klein, I., M. A. Fletcher, and G. S. Levey. 1973. Evidence for a dissociable glucagon binding site in a solubilized preparation of myocardial adenylate cyclase. J. Biol. Chem. 248: 5552–5554.PubMedGoogle Scholar
  70. 70.
    Giorgio, N. A., C. B. Johnson, and M. Blecher. 1974. Hormone receptors. Ill. Properties of glucagon-binding proteins isolated from liver plasma membranes. J. Biol. Chem. 249: 428–437.PubMedGoogle Scholar
  71. 71.
    Lesniak, M. A., P. Gorden, J. Roth, and J. R. Gavin, III. 1974. Binding of 125I-human growth hormone to specific receptors human cultured lymphocytes. J. Biol. Chem. 249: 1661–1667.PubMedGoogle Scholar
  72. 72.
    Malbon, C. C., and J. E. Zull. 1975. Solubilization of a parathyroid hormone receptor from bovine kidney cortex plasma membranes. Biochem. Biophys. Res. Commun. 66: 179–187.PubMedCrossRefGoogle Scholar
  73. Sutcliff, H. S., T. J. Martin, J. A. Eisman, and R. Pilczyk. 1973. Binding of parathyroid hormone to bovine kidney-cortex plasma membranes. Biochem. J. 134: 913–921.Google Scholar
  74. 74.
    Shiu, R. P. C., and H. G. Friesen. 1974. Properties of a prolactin receptor from the rabbit mammary gland. Biochem. J. 140: 301–311.PubMedGoogle Scholar
  75. 75.
    Labrie, F., N. Barden, G. Poirier, and A. DeLean. 1972. Binding of thyrotropin-releasing hormone to plasma membranes of bovine anterior pituitary gland. Proc. Natl. Acad. Sci. U.S.A. 69: 283–287.PubMedCrossRefGoogle Scholar
  76. 76.
    Desbuquois, B. 1974. The interaction of vasoactive intestinal polypeptide and secretion with liver-cell membranes. Eur. J. Biochem. 46: 439–450.PubMedCrossRefGoogle Scholar
  77. 77.
    Bravo, E. L., M. C. Khosla, and F. M. Bumpus. 1976. Differential effects of Asp-angiotensin II and Sar-angiotensin II on vascular and adrenal receptors in the dog. Clin. Sci. Mol. Med. 51: 41–45.PubMedGoogle Scholar
  78. 78.
    Freychet, P., R. Kahn, J. Roth, and D. M. Neville, Jr. 1973. Insulin receptors in liver cell plasma membranes. Proceding of the International Congress on Endocrinology, 4th, 1972, International Congress Series No. 256, R. O. Scow, ed. Excerpta Medica, Amsterdam. pp. 335–340.Google Scholar
  79. 79.
    Wolfson, A. R., H. B. McIntyre, and W. D. Odell. 1972. Adrenocorticotropin measurement by competitive binding receptor assay. J. Clin. Endocrinol. 34: 684–689.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Darrell D. Fanestil
    • 1
  1. 1.Department of MedicineUniversity of California, San DiegoLa JollaUSA

Personalised recommendations