Membrane Immunology and Permeability Functions

  • Peter K. Lauf


A considerable amount of information on the immunochemical structure and genetics of membrane surface antigens has now accumulated. It is generally established that the distribution of membrane antigens is asymmetric, i.e., that the vast majority of antigens are localized at the outer surface of the plasma membrane. Certain antigens may reside only in the protein portion of the outer membrane. However, most antigens have been structurally related to the carbohydrate moieties of membrane glycolipids or transmembranous glycoproteins, and thus are primary integral membrane constituents, as opposed to a few secondary antigens adsorbed to the surface at some time of the cell’s life cycle. The bulk of these carbohydrate antigens are blood group or transplantation antigens representing genetically and clinically important individual and species specificities. It is not the intention of this chapter to review the structural and genetic details of these antigens, since numerous experts in the field have done this over the past years.(1–8)


Cation Transport Adenosine Triphosphatase Permeability Function Ouabain Binding Immune Hemolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Prokop, O., and G. Uhlenbruck. 1969. Human Blood and Serum Groups. Maclaren, London.Google Scholar
  2. 2.
    Giblet, E. 1969. The red cell antigens: Blood groups. In: Genetic Markers in Human Blood. Blackwell, Oxford. pp. 268–345.Google Scholar
  3. 3.
    Winzler, R. J. 1970. Carbohydrates in cell surfaces. Int. Rev. Cytol. 7: 77–125.CrossRefGoogle Scholar
  4. 4.
    Springer, G. F. 1974. The role of blood group-active substances. In: 4th International Convocation on Immunology. E. Neter and F. Milgrom, eds. Karger, Basel. pp. 202–217.Google Scholar
  5. 5.
    Watkins, W. M. 1974. Blood group substances: Their nature and genetics. In: The Red Blood Cell, Vol. I. D. M. Surgenor, ed. Academic Press, New York. pp. 293–360.CrossRefGoogle Scholar
  6. 6.
    Hakamori, S. I., and A. Kobata. 1974. Blood group antigens. In: The Antigens, Vol. II. M. Sela, ed. Academic Press, New York. pp. 79–140.Google Scholar
  7. 7.
    Bird, G. W. G. 1975. Cell membrane receptors for serological reagents. J. Med. Genet. 12: 174–184.PubMedCrossRefGoogle Scholar
  8. 8.
    Race, R. R., and R. Sanger. 1975. Blood Groups in Man, 6th ed. Blackwell, Oxford.Google Scholar
  9. 9.
    Nisonoff, A., J. E. Hopper, and S. B. Spring. 1975. The Antibody Molecule. Academic Press, New York.Google Scholar
  10. 10.
    Lauf, P. K. 1975. Antigen-antibody reactions and cation transport in biomembranes: Immunophysiological aspects. Biochim. Biophys. Acta 415: 173–229.PubMedCrossRefGoogle Scholar
  11. 11.
    Lauf, P. K., and C. H. Joiner. 1976. Cation transport and [3H]ouabain binding in human red cells lacking the Rhesus antigens (Rh,,,,ll cells). Biophys. J. 16: 169A.Google Scholar
  12. 12.
    Lauf, P. K., and C. H. Joiner. 1977. Increased potassium transport and ouabain binding in human Rh,,,,t1 red blood cells. Blood 48: 457–468.Google Scholar
  13. 13.
    Schwartz, A., G. E. Lindenmayer, and J. C. Allen. 1975. The sodium-potassium adenosine triphosphatase: Pharmacological, physiological and biochemical aspects. Pharmacol. Rev. 27: 3–134.PubMedGoogle Scholar
  14. 14.
    Glynn, I. M., and S. J. D. Karlish. 1975. The sodium pump. Anna. Rev. Physiol. 37: 13–55.CrossRefGoogle Scholar
  15. 15.
    Martonosi, A. 1972. Transport of calcium by the sarcoplasmic reticulum. In: Metabolic Pathways, Vol. VI. L. E. Hokin, ed. Academic Press, New York. pp. 319–349.Google Scholar
  16. 16.
    Lauf, P. K. 1978. Membrane immunological reactions and transport. In: Transport across Biological Membranes,Vol. I: Fundamental Concepts and Model Systems. G. Giebisch, D. C. Tosteson, and H. H. Ussing, eds. Springer-Verlag, Berlin and New York. In press.Google Scholar
  17. 17.
    Abderhalden, E. 1898. Zur quantitativen vergleichenden Analyse des Blutes. Hoppe Seylers Z. Physiol. Chem. 25: 65–115.CrossRefGoogle Scholar
  18. 18.
    Kerr, S. E. 1937. Studies on the inorganic composition of blood. IV. The relationship of potassium to the acid-soluble phosphorus fractions. J. Biol. Chem. 117: 227–235.Google Scholar
  19. 19.
    Evans, J. V. 1957. The stability of the potassium concentration in the erythrocytes of individual sheep compared with the variability between different sheep. J. Physiol. (Load.) 136: 41–59.Google Scholar
  20. 20.
    Evans, J. V., and J. W. B. King. 1955. Genetic control of sodium and potassium concentrations in the red blood cells of sheep. Nature 176: 171.PubMedCrossRefGoogle Scholar
  21. 21.
    Rasmusen, B. A., and J. G. Hall. 1966. Association between potassium concentration and serological type of sheep red blood cells. Science 151: 1551–1552.PubMedCrossRefGoogle Scholar
  22. 22.
    Tosteson, D. C. 1966. Some properties of the plasma membranes of high potassium and low potassium sheep red cells. Ann. N.Y. Acad. Sci. 137: 577–590.PubMedCrossRefGoogle Scholar
  23. 23.
    Ellory, J. C., and E. M. Tucker. 1969. Active potassium transport in the development of m antigen on the red cells of LK lambs. J. Physiol. (Load.) 204: 101102P.Google Scholar
  24. 24.
    Tosteson, D. C., and J. F. Hoffman. 1960. Regulation of cell volume by active transport in high and low potassium sheep red cells. J. Gen. Physiol. 44: 169194.Google Scholar
  25. 25.
    Tosteson, D. C. 1963. Active transport, genetics, and cellular evolution. Fed. Proc. 22: 19–26.PubMedGoogle Scholar
  26. 26.
    Ellory, J. C., and E. M. Tucker. 1969. Stimulation of the potassium transport system in low potassium type sheep red cells by a specific antigen antibody reaction. Nature 222: 477–478.PubMedCrossRefGoogle Scholar
  27. 27.
    Rasmusen, B. A. 1969. A blood-group antibody which reacts exclusively with LK sheep red blood cells. Genetics 61: 49s.Google Scholar
  28. 28.
    Ellory, J. C., and E. M. Tucker. 1970. Active potassium transport and the L and M antigens of sheep and goat red cells. Biochim. Biophys. Acta 219: 160–168.PubMedCrossRefGoogle Scholar
  29. 29.
    Ellory, J. C., and E. M. Tucker. 1970. High potassium type red cells in cattle. J. Agr. Sci. Cambr. 74: 595596.Google Scholar
  30. 30.
    Lauf, P. K. 1974. Erythrocyte surface antigens and cation transport. Ann. N.Y. Acad. Sci. 242: 324–342.PubMedCrossRefGoogle Scholar
  31. 31.
    Lauf, P. K., and M. P. Dessent. 1973. Different responses of LL and LM (LK) sheep red cells to the hemolytic and K+-pump stimulating actions of anti-L serum. In: Erythrocytes, Thrombocytes, Leucocytes. Second International Symposium, Vienna 1972. E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, eds. Thieme, Stuttgart. pp. 112–115.Google Scholar
  32. 32.
    Lauf, P K, and W. W. Sun. 1976. The binding characteristics of M and L isoantibodies to high and low potassium sheep red cells. J. Membr. Biol. 28: 351372.Google Scholar
  33. 33.
    Lauf, P. K., and M. P. Dessent. 1973. Effect of metabolic state on immune-hemolysis of L-positive low potassium (LK) sheep red blood cells by isoimmune anti-L serum and rabbit serum complement. Immunol. Commun. 2: 193–212.PubMedGoogle Scholar
  34. 34.
    Joiner, C. H., and P. K. Lauf. 1975. The effect of anti-L on ouabain binding to sheep erythrocytes. J. Membr. Biol. 21: 99–112.PubMedCrossRefGoogle Scholar
  35. 35.
    Hoffman, P. G., and D. C. Tosteson. 1971. Active sodium and potassium transport in high potassium and low potassium sheep red cells. J. Gen. Physiol. 58: 438–466.PubMedCrossRefGoogle Scholar
  36. 36.
    Blostein, R., and E. S. Whittington. 1973. Studies of high and low potassium sheep erythrocyte membrane sodium-adenosine triphosphatase. J. Biol. Chem. 248: 1772–1777.PubMedGoogle Scholar
  37. 37.
    Sachs, J. R., P. B. Dunham, Kropp, D. L., J. C. Ellory, and J. F. Hoffman. 1974. Interaction of HK and LK goat red blood cells with ouabain. J. Gen. Physiol. 64: 536–550.PubMedCrossRefGoogle Scholar
  38. 38.
    Lauf, P. K., B. A. Rasmusen, P. G. Hoffman, P. B. Dunham, P. Cook, M. L. Parmelee, and D. C. Toste-son. 1970. Stimulation of active potassium transport in LK sheep red cells by blood group-L-antiserum. J.Membr. Biol. 3:1–13.Google Scholar
  39. 39.
    Ellory, J. C., and E. M. Tucker. 1970. A specific antigen-antibody reaction affecting ion transport in sheep LK erythrocytes. In: Permeability and Function of Biological Membranes. L. Bolls, A. Katchalsky, R. D. Keynes, W. R. Loewenstein, and B. A. Pethica, eds. North-Holland Publ., Amsterdam. pp. 120–127.Google Scholar
  40. 40.
    Blostein, R., P. K. Lauf, and D. C. Tosteson. 1971. Characteristics of Na+-ATPase of low-K+ sheep red cell membranes stimulated by blood group L antiserum. Biochim. Biophys. Acta 249: 623–627.PubMedCrossRefGoogle Scholar
  41. 41.
    Lauf, P. K., and D. C. Tosteson. 1972. Immunological aspects of cation transport in sheep red cells. In: Biomembranes, Vol. 3: Passive Permeability of Cell Membranes. F. Kreuzer and J. F. G. Slegers, eds. Plenum Press, New York. pp. 229–235.Google Scholar
  42. 42.
    Kepner, G. R., and D. C. Tosteson. 1972. Incubation of HK and LK sheep red cells in vitro for long periods. Biochim. Biophys. Acta 206: 471–483.Google Scholar
  43. 43.
    Lauf, P. K. 1972. The effect of iso-antibodies on membrane cation transport: The LK sheep erythrocytes as model cells. Haematologia 6: 259–267.PubMedGoogle Scholar
  44. 44.
    Snyder, J. J., B. A. Rasmusen, and P. K. Lauf. 1971. The nature of the antibody in iso-immune anti-L sera affecting active potassium transport in LK sheep red cells. J. Immunol. 107: 772–781.PubMedGoogle Scholar
  45. 45.
    Shrager, P., D. C. Tosteson, and P. K. Lauf. 1972. Biochemical characterization of a lipid-dependent membrane protein antigen in HK sheep red cells. Biochim. Biophys. Acta 290: 186–199.PubMedCrossRefGoogle Scholar
  46. 46.
    Lauf, P. K., B. A. Rasmusen, and D. C. Tosteson. 1970. Action of isoimmune anti-M and anti-L on active potassium transport in HK and LK sheep red cells. In: Blood and Tissue Antigens. D. Aminoff, ed. Academic Press, New York. p. 341.Google Scholar
  47. 47.
    Kropp, D. L., and J. R. Sachs. 1974. Comparison of the number of anti-L-binding sites on LK goat red cells with the number of Na-K pumps. Nature 252: 244–246.PubMedCrossRefGoogle Scholar
  48. 48.
    Lauf, P K., M. L. Parmelee, J. J. Snyder, and D. C. Tosteson. 1971. Enzymatic modification of the L and M antigens in LK and HK sheep erythrocytes and their membranes. J. Membr. Biol. 4: 52–67.CrossRefGoogle Scholar
  49. 49.
    Levine, P., and R. E. Stetson. 1939. An unusual case of intragroup agglutination. J.A.M.A. 113: 126–127.CrossRefGoogle Scholar
  50. 50.
    Landsteiner, K., and A. S. Wiener. 1940. An agglutinable factor in human blood recognized by immune sera for Rhesus blood. Proc. Soc. Exp. Biol. Med. 43: 223.Google Scholar
  51. 51.
    Levine, P. 1971. Blood groups Rh and LW. Proc. 12th Congr. Int. Soc. Blood Transf. Moscow, 1969. Bibl. Haematol. 38: 74–78.Google Scholar
  52. 52.
    Poulik, M. D., and P. K. Lauf. 1965. Heterogeneity of water-soluble structural components of human red cell membranes. Nature 208: 874–876.PubMedCrossRefGoogle Scholar
  53. 53.
    Green, F. A. 1972. Erythrocyte membrane lipids and Rh antigen activity. J. Biol. Chem. 247: 881–887.PubMedGoogle Scholar
  54. 54.
    Lauf, P. K., and M. D. Poulik. 1968. Solubilization and structural integrity of the human red cell membrane. Br. J. Haematol. 15: 191–202.PubMedCrossRefGoogle Scholar
  55. 55.
    Rega, A. F., R. I. Weed, C. F. Reed, G. Berg, and A. Rothstein. 1967. Changes in the properties of human erythrocyte membrane protein after solubilization by butanol extraction. Biochim. Biophys. Acta 147: 297312.Google Scholar
  56. 56.
    Levine, P., M. Celano, R. Fenichel, W. Pollack, and H. Singher. 1961. A “D-like” antigen in Rhesus monkey, human Rh positive and human Rh negative red blood cells. J. Immunol. 87: 747–752.PubMedGoogle Scholar
  57. 57.
    Seidl, S., W. Spielman, W., and H. Martin. 1972. Two siblings with Rh1 disease. Vox Sang. 23: 182–189.CrossRefGoogle Scholar
  58. 58.
    Sturgeon, P. 1970. Hematological observations on the anemia associated with blood type Rh •. Blood 36: 310–320.PubMedGoogle Scholar
  59. 59.
    Lee, P., and M. M. Stevenson. 1974. Membrane permeability to sodium and potassium in Rh,,,,ll red blood cells. Proceedings of the International Union of Physiological Sciences, Vol. XI. p. 16.Google Scholar
  60. 60.
    Rosse, W. F., and P. K. Lauf. 1970. Reaction of cold agglutinin with I antigen solubilized from human red cells. Blood 36: 377–384.Google Scholar
  61. 61.
    Hughes-Jones, N. C., B. Gardner, and R. Telford. 1963. Studies on the reaction between the blood-group antibody D and erythrocytes. Biochem. J. 88: 435440.Google Scholar
  62. 62.
    Masouredis, S. P., M. E. Dupuy, and M. Elliot. 1967. Relationship between Rho(D) zygosity and red cell Rho(D) antigen content in family members. J. Clin Invest. 46: 681–694.PubMedCrossRefGoogle Scholar
  63. 63..
    Nicolson, G. L., S. P. Masouredis, and S. J. Singer. 1971. Quantitative two-dimensional untrastructural distribution of Rh0(D) antigenic sites on human erythrocyte membranes. Proc. Natl. Acad. Sci. U.S.A. 68: 1416–1420.PubMedCrossRefGoogle Scholar
  64. 64.
    Smith, J. A., F. V. Lucas, A. P. Martin, D. A. Senhauser, and M. L. Vorbeck. 1973. Lipid-protein interactions of erythrocyte membranes: Comparison of normal O, Rh(D) positive with the O, Rh,,. Biophys. Biochem. Res. Commun. 54: 1015–1023.CrossRefGoogle Scholar
  65. 65.
    Darnborough, J., I. Dunsford, and D. A. Wallace. 1969. The Ena antigen and antibody. A genetical modification of human red cells affecting their blood grouping reactions. Vox Sang. 17: 241–255.PubMedCrossRefGoogle Scholar
  66. 66.
    Furuhjelm, U., G. Myllya, H. R. Nevanlinna, S. Nordling, A. Pirkola, J. Gavin, A. Gooch, R. Sanger, and P. Tippet. 1969. The red cell phenotype En(a-) and anti-Ena: Serological and physicochemical aspects. Vox Sang. 17: 257–278.CrossRefGoogle Scholar
  67. 67.
    Furuhjelm, U., H. R. Nevalinna, and A. Pirkola. 1973. A second Finnish En(a-) propositus with antiEna. Vox Sang. 24: 545–549.PubMedCrossRefGoogle Scholar
  68. 68.
    Pollack, W., H. J. Hager, R. Reckel, D. A. Toren, and H. O. Singher. 1965. A study of the forces involved in the second stage of hemagglutination. Transfusion 5: 158–183.PubMedCrossRefGoogle Scholar
  69. 69.
    Tanner, M. J. A., and D. J. Anstee. 1976. The membrane change in En(a-) human erythrocytes. Biochem. J. 153: 271–277.PubMedGoogle Scholar
  70. 70.
    Springer, G. F., and P. R. Desai. 1975. Human blood-group MN and precursor specificities: Structural and biological aspects. Carbohydr. Res. 40: 183–192.PubMedCrossRefGoogle Scholar
  71. 71.
    Rothstein, A., Z. I. Cabantchik, and P. A. Knauf. 1976. Mechanism of anion transport in red blood cells: Role of membrane proteins. Fed. Proc. 35: 3–10.PubMedGoogle Scholar
  72. 72.
    Brown, P. A., M. B. Feinstein, and R. I. Sha’afi. 1975. Membrane proteins related to water transport in human erythrocytes. Nature 254: 523–525.PubMedCrossRefGoogle Scholar
  73. 73.
    Dunham, P. B., and J. F. Hoffman. 1971. Active cation transport and ouabain binding in high potassium and low potassium red blood cells of sheep. J. Gen. Physiol. 58: 94–116.PubMedCrossRefGoogle Scholar
  74. 74.
    Knauf, P. A., F. Proverbio, and J. F. Hoffman. 1974. Chemical characterization and pronase susceptibility of the Na:K pump-associated phosphoprotein of human red blood cells. J. Gen. Physiol. 63: 305–323.PubMedCrossRefGoogle Scholar
  75. 75.
    Averdunk, R., T. Günther, F. Dorn, and U. Zimmermann. 1969. Uber die Wirkung von Antikörpern auf die ATPase-Aktivität und den aktiven Na-K-Transport von E. coli und Menschen-Erythrocyten. Z. Naturforsch. 24b: 693–698.Google Scholar
  76. 76.
    McCans, J. L., L. K. Lane, G. E. Lindenmayer, V. P. Butler, and A. Schwartz. 1974. Effects of an antibody to a highly purified Na+,K+-ATPase from canine renal medulla: Separation of the “holoenzyme antibody” into catalytic and cardiac glycoside receptor-specific components. Proc. Natl. Acad. Sci. U.S.A. 71: 2449–2452.PubMedCrossRefGoogle Scholar
  77. 77.
    Kyte, J. 1972. Properties of the two polypeptides of sodium-and potassium-dependent adenosine triphosphatase. J. Biol. Chem. 247: 7642–7649.PubMedGoogle Scholar
  78. 78.
    Ruoho, A., and J. Kyte. 1974. Photoaffinity labeling of the ouabain-binding site on (Nat + K+) adenosinetriphosphatase. Proc. Natl. Acad. Sci. U.S.A. 71: 2352–2356.PubMedCrossRefGoogle Scholar
  79. 79.
    Hegyvary, C. 1975. Covalent labeling of the digitalis-binding component of plasma membranes. Mol. Pharmacol. 11: 588–594.PubMedGoogle Scholar
  80. 80.
    Kyte, J. 1974. The reactions of sodium and potassium ion-activated adenosine triphosphatase with specific antibodies. J. Biol. Chem. 249: 3652–3660.PubMedGoogle Scholar
  81. 81.
    Kyte, J. 1976. Immunochemical approaches for the determination of membrane-bound enzymes. In: The Enzymes of Biological Membranes, Vol. 1. A. Martonosi, ed. Plenum Press, New York. pp. 213–227.CrossRefGoogle Scholar
  82. 82.
    Jean, D. H., R. W. Albers, and G. J. Koval. 1975. Sodium-potassium-activated adenosine triphosphatase of electrophorus electric organ. X. Immunochemical properties of the lubrol-solubilized enzyme and its constituents. J. Biol. Chem. 250: 1035–1040.PubMedGoogle Scholar
  83. 83.
    Jean, D. H., and R. W. Albers. 1976. Immunochemical studies of the large polypeptide of the electrophorus Na+K+-ATPase. Fed. Proc. 35: 1663.Google Scholar
  84. 84.
    Rhee, H. M., and L. E. Hokin. 1975. Inhibition of the purified sodium-potassium activated adenosinetriphosphatase from the rectal gland of Squalus acanthias by antibody against the glycoprotein subunit. Biochem. Biophys. Res. Commun. 63: 1139PubMedCrossRefGoogle Scholar
  85. 85.
    Jorgensen, P. L., O. Hansen, I. M. Glynn, and J. D. Cavieres. 1973. Antibodies to pig kidney (Na+ + K+)ATPase inhbit the Na+ pump in human red cells provided they have access to the inner surface of the cell membrane. Biochim. Biophys. Acta 291: 795–800.PubMedCrossRefGoogle Scholar
  86. 86.
    Askari, A., and S. N. Rao. 1972. Na ’,K+-ATPase complex: Effects of anticomplex antibody on the partial reactions catalyzed by the complex. Biochem. Biophys. Res. Commun. 49: 1323–1328.PubMedCrossRefGoogle Scholar
  87. 87.
    Askari, A. 1974. The effects of antibodies to Na+,K+ATPase on the reactions catalyzed by the enzyme. Ann. N.Y. Acad. Sci. 242: 372–388.PubMedCrossRefGoogle Scholar
  88. 88.
    Glynn, I. M., S. J. D. Karlish, J. D. Cavieres, J. C. Ellory, V. L. Lew, and P. L. Jorgensen. 1974. The effects of an antiserum to Na+,K+-ATPase on the ion-transporting and hydrolytic activities of the enzyme. Ann. N.Y. Acad. Sci. 242: 357–361.Google Scholar
  89. 89.
    Smith, T. W., and H. Wagner, 1975. Effects of (Nat + K+)-ATPase-specific antibodies on enzymatic activity and monovalent cation transport. J. Membr. Biol. 25: 341–360.PubMedCrossRefGoogle Scholar
  90. 90.
    McCans, J. L., G. E. Lindenmayer, B. J. R. Pitts, M. V. Ray, B. D. Raynor, V. P. Butler, and A. Schwartz. 1975. Antigenic differences in (Na+ + K+) ATPase preparations isolated from various organs and species. J. Biol. Chem. 25: 7257–7265.Google Scholar
  91. 91.
    Kyte, J. 1975. Immunoferritin determination of the distribution of (Na+ + K+)ATPase over the plasma membranes of renal convoluted tubules. I. Distal segment. J. Cell Biol. 68: 287–303.CrossRefGoogle Scholar
  92. 92.
    Kyte, J. 1976. Immunoferritin determination of the distribution of (Na+ + K+)ATPase over the plasma membranes of renal convoluted tubules. II. Proximal segment. J. Cell Biol. 68: 304–318.PubMedCrossRefGoogle Scholar
  93. 93.
    Singer, S. J. 1974. Molecular organization of membranes. Annu. Rev. Biochem. 43: 805–834.PubMedCrossRefGoogle Scholar
  94. 94.
    Giotta, G. J. 1976. Quarternary structure of (Na+ + K+)-dependent adenosine triphosphatase. J. Biol. Chem. 251: 1247–1252.PubMedGoogle Scholar
  95. 95.
    Stein, W. D., W. R. Lieb, S. J. D. Karlish, and Y. Eilam. 1973. A model for active transport of sodium and potassium ions as mediated by a tetrameric enzyme. Proc. Natl. Acad. Sci. U.S.A. 70: 275–278.PubMedCrossRefGoogle Scholar
  96. 96.
    Blostein, R. 1975. Na+ATPase of the mammalian erythrocyte membrane. J. Biol. Chem. 250: 61186124.Google Scholar
  97. 97.
    Hokin, L. E., and J. L. Dahl. 1972. The sodium-potassium adenosinetriphosphatase. In: Metabolic Pathways, Vol. VI. L. E. Hokin, ed. Academic Press, New York. pp. 269–315.Google Scholar
  98. 98.
    Froehlich, J. P., R. W. Albers, G. J. Koval, R. Goebel, and M. Berman. 1976. Evidence for a new intermediate made in the mechanism of (Na+ + K+)-adenosinetriphosphatase. J. Biol. Chem. 251: 2186–2188.PubMedGoogle Scholar
  99. 99.
    MacLennan, D. H., and P. C. Holland. 1976. Calcium transport in sarcoplasmic reticulum. Annu. Rev. Biophys. Bioeng. 4: 377–404.CrossRefGoogle Scholar
  100. 100.
    Stewart, O. S., and D. H. MacLennan. 1975. Isolation and characterization of tryptic fragments of the sarcoplasmic reticulum adenosine triphosphatase Ann. N.Y. Acad. Sci. 264: 326–334.PubMedCrossRefGoogle Scholar
  101. 101.
    Stewart, P. S., D. H. MacLennan, and A. E. Shamoo. 1976. Isolation and characterization of tryptic fragments of the adenosine triphosphatase of sarcoplasmic reticulum. J. Biol. Chem. 251: 721–729.Google Scholar
  102. 102.
    Martonosi, A., and F. Fortier. 1974. The effect of anti-ATPase antibodies upon the Ca++ transport of sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 60: 382–389.PubMedCrossRefGoogle Scholar
  103. 103.
    Hanson, R. L., and E. P. Kennedy. 1973. Energytransducing adenosine triphosphatase from Excherichia coli: Purification, properties and inhibition by antibody. J. Bacteriol. 114: 772–781.PubMedGoogle Scholar
  104. 104.
    Nelson, N., B. I. Kanner, and D. L. Gutnick. 1974. Purification and properties of Mg2+-Ca2+ adenosinetriphosphatase from Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 71: 2720–2724.CrossRefGoogle Scholar
  105. 105.
    Whiteside, T. L., and M. R. J. Salton. 1970. Antibody to adenosine triphosphatase from membranes of Micrococcus lysodeiktus. Biochemistry 9: 3034–3040.CrossRefGoogle Scholar
  106. 106.
    Mirsky, R., V. Barlow, and P. Berman. 1974. Antibodies to purified membrane-bound ATPase from Bacillus megaterium KM and their reaction with protoplasts and cytoplasmic membranes. Biochim. Biophys. Acta 345: 55–61.PubMedCrossRefGoogle Scholar
  107. 107.
    Whiteside, T. L., A. J. DeSiervo, and M. R. J. Salton. 1971. Use of antibody to membrane adenosine triphosphatase in the study of bacterial relationships. J. Bacteriol. 105: 957–967.PubMedGoogle Scholar
  108. 108.
    Oppenheimer, J. D., and M. R. J. Salton. 1973. Localization and distribution of Micrococcus lysodeiktus membrane ATPase determined by ferritin labelling. Biochim. Biophys. Acta 298: 297–332.CrossRefGoogle Scholar
  109. 109.
    Humphrey, J. H., and R. R. Dourmashkin. 1969. The lesions in cell membranes caused by complement. Adv. Immunol. 11: 75–115.PubMedCrossRefGoogle Scholar
  110. 110.
    Kinsky, S. C. 1972. Antibody-complement interaction with lipid model membranes. Biochim. Biophys. Acta 265: 1–23.PubMedCrossRefGoogle Scholar
  111. 111.
    Rapp, H. J., and T. Borsos. 1970. Molecular Basis of Complement Action. Appleton, New York.Google Scholar
  112. 112.
    Vogt, W. 1974. Activation, activities and pharmacologically active products of complement. Pharmacol. Rev. 26: 125–169.PubMedGoogle Scholar
  113. 113.
    Seeman, P. 1974. Ultrastructure of membrane lesions in immune lysis, osmotic lysis and drug-induced lysis. Fed. Proc. 33: 2116–2124.PubMedGoogle Scholar
  114. 114.
    Müller-Eberhard, H. J. 1975. Complement. Annu. Rev. Biochem. 44: 697–724.PubMedCrossRefGoogle Scholar
  115. 115.
    DelCastillo, J., A. Rodriguez, C. A. Romero, and V. Sanchez. 1966. Lipid films as transducers for detection of antigen-antibody and enzyme-substrate reactions. Science 153: 185–188.CrossRefGoogle Scholar
  116. 116.
    Barfort, P., E. R. Arquilla, and P. O. Vogelhut. 1968. Resistance changes in lipid bilayers: Immunological applications. Science 160: 1119–1121.PubMedCrossRefGoogle Scholar
  117. 117.
    Wobschall, D. M., and C. McKeon. 1975. Step conductance increases in bilayer membranes induced by antibody-antigen-complement action. Biochim. Biophys. Acta 413: 317–321.PubMedCrossRefGoogle Scholar
  118. 118.
    Michaels, D. W., A. S. Abramovitz, C. H. Hammer, and M. Mayer. 1976. Increased ion permeability of planar lipid bilayer membranes after treatment with the C5b-9 cytolytic attack mechanism of complement. Proc. Natl. Acad. Sci. U.S.A. 73: 2852–2856.PubMedCrossRefGoogle Scholar
  119. 119.
    Abramovitz, A. S., C. B. Hammer, and M. M. Mayer. 1976. Effective size of lesions produced in liposomes by the C5b-9 cytolytic attack mechanism of complement. Fed. Proc. 35: 762.Google Scholar
  120. 120.
    Humphrey, J. H., and R. R. Dourmashkin. 1965. Electron microscope studies of immune cell lysis. In: Ciba Foundation Symposium: Complement. G. E. W. Wolstenholme and J. Knight, eds. Little, Brown, Boston. pp. 175–189.CrossRefGoogle Scholar
  121. 121.
    Humphrey, J. H. 1967. Hemolytic efficiency of rabbit IgG anti-Forrsman antibody and its augmentation by anti-rabbit IgG. Nature 216:1295–12%.Google Scholar
  122. 122.
    Borsos, T., and H. J. Rapp. 1965. Complement fixation on cell surfaces by 19S and 7S antibodies. Science 150: 505–506.PubMedCrossRefGoogle Scholar
  123. 123.
    Yasmeen, D., J. R. Ellerson, K. J. Dorrington, and R. H. Painter. 1973. Evidence for the domain hypothesis: Location of the site of cytophilic activity toward guinea pig macrophages in the CH3 homology region of human immunoglobulin G. J. Immunol. 110: 17061709.Google Scholar
  124. 124.
    Hammer, C. H., A. Nicholson, and M. M. Mayer. 1975. On the mechanism of cytolysis by complement: Evidence on insertion of C5b and C7 subunits of the C5b,6,7 complex into phospholipid bilayers of erythrocyte membranes. Proc. Natl. Acad. Sci. U.S.A. 72: 5076–5080.PubMedCrossRefGoogle Scholar
  125. 125.
    Medicus, R. G., R. D. Schreiber, O. Götze, and H. J. Müller-Eberhard. 1976. A molecular concept of the properdin pathway. Proc. Natl. Acad. Sci. U.S.A. 73: 612–616.PubMedCrossRefGoogle Scholar
  126. 126.
    Green, H., R. A. Fleischer, P. Barrow, and B. Goldberg. 1959. The cytotoxic action of immune gamma globulin and complement on Krebs ascites tumor cells. J. Exp. Med. 109: 511–521.PubMedCrossRefGoogle Scholar
  127. 127.
    Green, H., P. Barrow, and B. Goldberg. Effect of antibody and complement on permeability control in ascites tumor cells and erythrocytes. J. Exp. Med. 110: 699–713.Google Scholar
  128. 128.
    Green, H., and B. Goldberg. 1960. The action of antibody and complement on mammalian cells. Ann. N.Y. Acad. Sci. 87: 352–362.PubMedCrossRefGoogle Scholar
  129. 129.
    Heedman, P. A. 1958. Hemolysis of individual red blood cells. Exp. Cell Res. 14: 9–22.PubMedCrossRefGoogle Scholar
  130. 130.
    Kwant, W. O., and P. Seeman. 1970. The erythrocyte is a perfect osmometer. J. Gen. Physiol. 55: 208219.Google Scholar
  131. 131.
    Valet, G., and W. Opferkuch. 1975. Mechanism of complement-induced cell lysis. Demonstration of a three-step mechanism of EAC1–8 cell lysis by C9 and of a non-osmotic swelling of erythrocytes. J. Immunol. 115: 1028–1033.PubMedGoogle Scholar
  132. 132.
    Chan, T. K., P. L. LaCelle, and R. I. Weed. 1975. Slow phase hemolysis in hypotonic electrolyte solutions. J. Cell. Physiol. 85: 47–58.PubMedCrossRefGoogle Scholar
  133. 133.
    Iles, G. H., P. Seeman, D. Naylor, and B. Cinader. 1973. Membrane lesions in immune lysis. Surface rings, globule aggregated, and transient opening. J. Cell Biol. 56: 528–539.PubMedCrossRefGoogle Scholar
  134. 134.
    Mayer, M. M. 1961. Development of the one-hit theory of immune lysis. In: Immunochemical Approaches to Problems in Microbiology. M. Heidelberger and O. J. Plescia, eds. Rutgers Univ. Press, New Brunswick, New Jersey. pP. 268–279.Google Scholar
  135. 135.
    Mayer, M. M., J. A. Miller, and H. S. Shin. 1970. A specific method for purification of the second component of guinea pig complement and a chemical evaluation of the one-hit theory. J. Immunol. 105: 327–341.PubMedGoogle Scholar
  136. 136.
    Rommel, R. A., and M. M. Mayer. 1973. Studies of guinea pig complement component C9: Reaction kinetics and evidence that lysis of each EAC1–8 results from a single membrane lesion caused by one molecule of C9. J. Immunol. 110: 637–647.PubMedGoogle Scholar
  137. 137.
    Li, C. K. 1975. Proof of the one-hit mechanism of complement-induced lysis. Immunochemistry 12: 89–92.PubMedCrossRefGoogle Scholar
  138. 138.
    Rosse, W. F., and J. V. Dacie. 1966. Immune lysis of normal and paroxysmal nocturnal hemoglobinuria (PNH) red blood cells. I. The sensitivity of PNH red cells to lysis by complement and specific antibody. J. Clin. Invest. 45: 736–748.PubMedCrossRefGoogle Scholar
  139. 139.
    Rosse, W. F., and J. V. Dacie. 1966. Immune lysis of normal human and paroxysmal nocturnal hemoglobin-uria (PNH) red blood cells. II. The role of complement components in the increased sensitivity of PNH red cells to immune lysis. J. Clin. Invest. 45: 749–757.PubMedCrossRefGoogle Scholar
  140. 140.
    Goldberg, B., and H. Green. 1959. The cytotoxic action of human gamma globulin and complement on Krebs ascites tumor cells. I. Ultrastructural studies. J. Exp. Med. 109: 505–510.PubMedCrossRefGoogle Scholar
  141. 141.
    Kataoka, T., J. R. Williamson, and S. C. Kinsky. 1973. Release of macromolecular markers (enzymes) from liposomes treated with antibody and complement. An attempt at correlation with electron microscopic observations. Biochim. Biophys. Acta 298: 158–179.PubMedCrossRefGoogle Scholar
  142. 142.
    Opferkuch, W., H. J. Rapp, H. R. Colten, and T. Borsos. 1971. Immune hemolysis and the functional properties of the second (C2) and fourth (C4) components of complement. II. Clustering of effective C42 complexes at individual hemolytic sites. J. Immunol. 106: 407–413.PubMedGoogle Scholar
  143. 143.
    Mayer, M. M. 1973. Mechanism of cytolysis by complement. Proc. Natl. Acad. Sci. U.S.A. 69: 2954–2958.CrossRefGoogle Scholar
  144. 144.
    Seeman, P. 1973. Macromolecules may inhibit diffusion of hemoglobin from lysing erythrocytes by exclusion of solvent. Can. J. Physiol. Pharmacol. 51: 226229.Google Scholar
  145. 145.
    Wilbrandt, W. 1941. Osmotische Natur sogenannter nicht-osmotischer Hämolysen (Kolloidosmotische Hämolyse). Pfluegers Arch. 245: 22–52.Google Scholar
  146. 146.
    Hingson, D. J., R. K. Massengill, and M. M. Mayer. 1969. The kinetics of release of ‘rubidium and hemoglobin from erythrocytes damaged by antibody and complement. Immunochemistry 6: 295–307.PubMedCrossRefGoogle Scholar
  147. 147.
    Hoffman, L. G. 1969. Statistical evaluation of reaction mechanism in immune hemolysis. Immunochemistry 6: 309–325.CrossRefGoogle Scholar
  148. 148.
    Lauf, P. K. 1975. Immunological and physiological characteristics of the rapid immune hemolysis of neuraminidase-treated sheep red cells produced by fresh guinea pig serum. J. Exp. Med. 142: 974–988.PubMedCrossRefGoogle Scholar
  149. 149.
    Dourmashkin, R. R., and W. F. Rosse. 1966. Morphological changes in the membranes of red blood cells undergoing hemolysis. Am. J. Med. 41: 699–710.PubMedCrossRefGoogle Scholar
  150. 150.
    Sears, D. A., R. I. Weed, S. N. Swisher, and N. Trabold. 1964. Differences in the mechanism of in vitro immune hemolysis related to antibody specificity. J. Clin. Invest. 43: 975–985.PubMedCrossRefGoogle Scholar
  151. 151.
    Bhakdi, S., O. J. Bjerrum, U. Rother, H. Knüfermann, and D. F. H. Wallach. 1975. Innumochemical analyses of membrane-bound complement. Detection of the terminal complement complex and its similarity to “intrinsic” erythrocyte membrane proteins. Biochim. Biophys. Acta 406: 21–35.PubMedCrossRefGoogle Scholar
  152. 152.
    Kolb, W. P., and H. J. Müller-Eberhard, 1975. Neoantigens of the membrane attack complex of human complement. Proc. Natl. Acad. Sci. U.S.A. 72: 1687–1689.PubMedCrossRefGoogle Scholar
  153. 153.
    Fischer, H., and I. Haupt. 1965. Serumkomplement: Übersicht und Aktuelle Problem. In: 15. Colloqu. Ges. Physiol. Chemie, 1964, Mosbach/Baden. Springer-Verlag, Berlin and New York. pp. 284–306.Google Scholar
  154. 154.
    Hesketh, R. T., S. N. Payne, and J. H. Humphrey. 1972. Complement and phospholipase C lysis of lipid membranes. Immunology 23: 705–711.PubMedGoogle Scholar
  155. 155.
    Kinsky, S. C., P. P. M. Bonsen, C. B. Kinsky, L. L. M. van Deenen, and A. F. Rosenthal. 1971. Preparation of immunologically responsive liposomes with phosphonyl and phosphinyl analogues of lecithin. Biochim. Biophys. Acta 233: 851–859.Google Scholar
  156. 156.
    Martz, E., S. J. Burakoff, and B. Benaceraff. 1974. Interruption of the sequential release of small and large molecules from tumor cells by low temperature during cytolysis mediated by immune T-cells or complement. Proc. Natl. Acad. Sci. U.S.A. 71: 177–181.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Peter K. Lauf
    • 1
  1. 1.Department of PhysiologyDuke University Medical CenterDurhamUSA

Personalised recommendations