The Provision of Cellular Metabolic Energy for Active Ion Transport

  • Michael W. Weiner
  • Roy H. Maffly


A characteristic of all living organisms is the presence of solute gradients across their cell membranes. These gradients are developed and maintained, directly or indirectly, by active transport, which is in turn sustained by energy derived from cellular metabolism. This chapter will address the nature of the process by which the metabolic energy of cellular metabolism is converted into the electrochemical energy of active ion transport, and it will consider the mechanisms by which metabolism and transport are mutually regulated.


Active Transport Nicotinamide Adenine Dinucleotide Sodium Transport Frog Skin Ethacrynic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Waller, A. D. 1897. On Animal Electricity. London. (Cited by Lund, E. J. 1928. J. Exp. Zool. 51:265–290.)Google Scholar
  2. 2.
    Lund, E. J. 1928. Relation between continuous bio-electric currents and cell respiration. III. Effects of concentration of oxygen on cell polarity in the frog skin. J. Exp. Zool. 51: 291–307.CrossRefGoogle Scholar
  3. 3.
    Politoff, A. L., S. J. Socolar, and W. R. Loewenstein. 1969. Permeability of a cell membrane junction. Dependence on energy metabolism. J. Gen. Physiol. 53: 498–515.PubMedCrossRefGoogle Scholar
  4. 4.
    Harris, J. E. 1941. The influence of the metabolism of human erythrocytes on their potassium content. J. Biol. Chem. 141: 579–595.Google Scholar
  5. 5.
    Maizels, M. 1951. Factors in the active transport of cations. J. Physiol. (Lond.) 112: 59–83.Google Scholar
  6. 6.
    Whittam, R., and M. E. Ager. 1965. The connection between active cation transport and metabolism in erythrocytes. Biochem. J. 97: 214–227.PubMedGoogle Scholar
  7. 7.
    Klahr, S., and N. S. Bricker. 1965. Energetics of anaerobic sodium transport by fresh water turtle bladder. J. Gen. Physiol. 48: 571–580.PubMedCrossRefGoogle Scholar
  8. 8.
    Gordon, E. E., and M. DeHartog. 1969. The relationship between cell membrane potassium ion transport and glycolysis. J. Gen. Physiol. 54: 650–663.PubMedCrossRefGoogle Scholar
  9. 9.
    Leaf, A., J. Anderson, and L. B. Page. 1958. Active sodium transport by the isolated toad bladder. J. Gen. Physiol. 41: 657–668.PubMedCrossRefGoogle Scholar
  10. 10.
    Dydynska, M., and E. J. Harris. 1966. Consumption of high-energy phosphates during active sodium potassium interchange of frog muscle. J. Physiol. (Lond.) 182: 92–109.Google Scholar
  11. 11.
    Lee, J. B., V. K. Vance, and G. F. Cahill, Jr. 1962. Metabolism of C“-labelled substrates by rabbit kidney cortex and medulla. Am. J. Physiol. 203: 27–36.PubMedGoogle Scholar
  12. 12.
    Maffly, R. H., and I. S. Edelman. 1963. The coupling of the short-circuit current to metabolism in the urinary bladder of the toad. J. Gen. Physiol. 46: 733–754.PubMedCrossRefGoogle Scholar
  13. 13.
    Sharp, G. W. G., and A. Leaf. 1964. The central role of pyruvate in the stimulation of sodium transport by aldosterone. Proc. Natl. Acad. Sci. U.S.A. 52: 11141121.Google Scholar
  14. 14.
    Rottenberg, H., S. R. Caplan, and A. Essig. 1967. Stoichiometry and coupling: Theories of oxidative phosphorylation. Nature 216: 610–611.PubMedCrossRefGoogle Scholar
  15. 15.
    Ussing, H. H. 1960. The alkali metal ions in isolated systems and tissues. In: Handbuch der Experimentellen Pharmakologie, Vol. 13. Springer-Verlag, Berlin and New York.Google Scholar
  16. 16.
    Zerahn, K. 1956. Oxygen consumption and active sodium transport in the isolated and short-circuited frog skin. Acta Physiol. Scand. 36: 300–318.PubMedCrossRefGoogle Scholar
  17. 17.
    Cohen, J. J., and M. Barac-Nieto. 1973. Renal metabolism of substrate, in relation to renal function. In: Renal Physiology, Section 8: Handbook of Physiology. J. Orloff and R. W. Berliner, eds. Am. Physiol. Soc., Washington, D.C. Chap. 27, pp. 912–916.Google Scholar
  18. Elshove, A., and G. D. V. Van Rossum. 1963. Net movements of sodium and potassium and their relation to respiration, in slices of rat liver incubated in vitro. J. Physiol (Lond.) 168:531–553.Google Scholar
  19. 19.
    Whittam, R. 1975. Kinetic and enzymic aspects of membrane transport. In: Biological Membranes. D. S. Parsons, ed. Oxford Univ. Press (Clarendon), London. Chap. 10, pp. 145–157.Google Scholar
  20. 20.
    Ussing, H. H., and K. Zerahn. 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol. Scand. 23: 110–127.PubMedCrossRefGoogle Scholar
  21. 21.
    Leaf, A., L. B. Page, and J. Anderson. 1959. Respiration and active sodium transport of isolated toad bladder. J. Biol. Chem. 234: 1625–1629.PubMedGoogle Scholar
  22. 22.
    Lester, R. G., and E. Grim. 1975. Substrate utilization and oxygen consumption by canine jejunal mucosa in vitro. Am. J. Physiol 229: 139–143.Google Scholar
  23. 23.
    Vieira, F. L., S. R. Caplan, and A. Essig. 1972. Energetics of sodium transport in frog skin. I. Oxygen consumption in the short-circuited state. J. Gen. Physiol. 59: 60–76.PubMedCrossRefGoogle Scholar
  24. 24.
    Coplon, N. S., R. E. Steele and R. H. Maffly. 1977. Interrelationships of sodium transport and carbon dioxide production by the toad bladder: Response to changes in mucosal sodium concentration, to vasopressin and to availability of metabolic substrate. J. Membr. Biol. 34: 289–312.PubMedCrossRefGoogle Scholar
  25. 25.
    Hayaishi, O., and M. Nozaki. 1969. Nature and mechanisms of oxygenases. Science 164: 389–396.PubMedCrossRefGoogle Scholar
  26. 26.
    Lehninger, A. L. 1975. Biochemistry, 2nd ed. Worth, New York.Google Scholar
  27. 27.
    Van Rossum, G. D. V. 1964. The effect of oligomycin on net movements of sodium and potassium in mammalian cells in vitro. Biochim. Biophys. Acta 82: 556571.Google Scholar
  28. 28.
    Tobin, R. B., and E. C. Slater. 1965. The effect of oligomycin on the respiration of tissue slices. Biochim. Biophys. Acta 105: 214–220.PubMedCrossRefGoogle Scholar
  29. 29.
    Judah, J. D., and K. Ahmed. 1964. The biochemistry of sodium transport. Biol. Rev. 39: 160–193.PubMedCrossRefGoogle Scholar
  30. 30.
    Hokin, L. E., and M. R. Hokin. 1960. The role of phosphatidic acid and phosphoinositide in transmem-brane transport elicited by acetylcholine and other humoral agents. Int. Rev. Neurobiol. 2: 99–136.PubMedCrossRefGoogle Scholar
  31. 31.
    Whalen, W. J. 1965. Evidence for the Fenn effect in skeletal muscle exposed to low p02. Nature 205: 1224–1225.CrossRefGoogle Scholar
  32. 32.
    Friedrichs, D., and W. Schoner. 1973. Stimulation of renal gluconeogenesis by inhibition of the sodium pump. Biochim. Biophys. Acta 304: 142–160.PubMedCrossRefGoogle Scholar
  33. 33.
    Silva, P., J. S. Stoff, B. D. Ross, and F. M. Epstein. 1975. Relation between sodium transport and gluconeogenesis in the isolated perfused kidney. Abstracts, 8th Annual Meeting, American Society of Nephrology. Washington. D.C. p. 95.Google Scholar
  34. 34.
    Van Rossum, G. D. V., M. Gosalvez, T. Galeotti, and H. P. Morris. 1971. Net movements of monovalent and bivalent cations, and their relation to energy metabolism, in slices of hepatoma 3924A and of a mammary tumor. Biochim. Biophys. Acta 245: 263–276.Google Scholar
  35. 35.
    Martin, D. W., and J. M. Diamond. 1966. Energetics of coupled active transport of sodium and chloride. J. Gen. Physiol. 50: 295–315.PubMedCrossRefGoogle Scholar
  36. 36.
    Randall, H. M., Jr., and J. J. Cohen. 1966. Anaerobic CO2 production by dog kidney in vitro. Am. J. Physiol. 211: 493–505.Google Scholar
  37. 37.
    Schultz, S. 1974. Irreversible thermodynamics In: Biomembranes, Vol. 4A: Intestinal Absorption. D. H. Smith, ed. Plenum Press, New York. pp. 199–239.Google Scholar
  38. 38.
    Civan, M. M. 1970. Effects of active sodium transport on current-voltage relationship of toad bladder. Am. J. Physiol. 219: 234–245.PubMedGoogle Scholar
  39. 39.
    Saito, T., A. Essig, and S. R. Caplan. 1973. The effect of aldosterone on the energetics of sodium transport in the frog skin. Biochim. Biophys. Acta 318: 371–382.CrossRefGoogle Scholar
  40. 40.
    Erlij, D., and M. W. Smith. 1973. Sodium uptake by frog skin and its modification by inhibitors of transepithelial sodium transport. J. Physiol. (Lond.) 228: 221239.Google Scholar
  41. 41.
    Lipmann, F. 1941. Metabolic generation and utilization of phosphate bond energy. Adv. Enzymol. 1: 99162.Google Scholar
  42. 42.
    Klahr, S., and N. S. Bricker. 1964. Na transport by isolated turtle bladder during anaerobiosis and exposure to KCN. Am. J. Physiol. 206: 1333–1339.PubMedGoogle Scholar
  43. 43.
    Glynn, I. M., and S. J. D. Karlish. 1975. The sodium pump. Annu. Rev. Physiol. 37: 13–55.PubMedCrossRefGoogle Scholar
  44. 44.
    Hokin, L. E., and J. L. Dahl. 1972. The sodium-potassium adenosinetriphosphatase. In: Metabolic Pathways, 3rd ed., Vol. 6: Metabolic Transport. E. Hokin, ed. Academic Press, New York. pp. 270–315.Google Scholar
  45. 45.
    Glynn, I. M., and V. L. Lew. 1970. Synthesis of adenosine triphosphate at the expense of downhill movements in intact red cells. J. Physiol. (Lond.) 207: 343–402.Google Scholar
  46. 46.
    Hilden, S., H. M. Rhee, and L. E. Hokin. 1974. Sodium transport by phospholipid vesicles containing purified sodium and potassium ion-activated adenosine triphosphatase. J. Biol. Chem. 249: 7432–7440.PubMedGoogle Scholar
  47. 47.
    Gutman, Y., and D. Glushevitzky-Strachman. 1973. Effect of dehydration, food deprivation, saline and adrenalectomy on microsomal (Nat + K+)-dependent ATPase in the salivary glands and intestinal mucosa. Biochim. Biophys. Acta 304: 533–540.PubMedCrossRefGoogle Scholar
  48. 48.
    Alexander, J. C., and J. B. Lee. 1970. Effect of osmolality on Na+-K+-ATPase in outer renal medulla. Am. J. Physiol. 219: 1742–1745.PubMedGoogle Scholar
  49. 49.
    Katz, A. J., and F. H. Epstein. 1967. The role of sodium-potassium-activated adenosine triphosphatase in the reabsorption of sodium by the kidney. J. Clin. Invest. 46: 1999–2011.PubMedCrossRefGoogle Scholar
  50. 50.
    Jorgensen, P. L. 1969. Regulation of the (Nat + K+) activated ATP hydrolyzing enzyme system in rat kidney. II. The effect of aldosterone on the activity in kidneys of adrenalectomized rats. Biochim. Biophys. Acta 192: 326–334.PubMedCrossRefGoogle Scholar
  51. 51.
    Ismail-Beigi, F., and I. S. Edelman. 1971. The mechanism of the calorigenic action of thyroid hormone: Stimulation of Na+ + K+-activated adenosinetriphosphatase activity. J. Gen. Physiol. 57: 710–722.PubMedCrossRefGoogle Scholar
  52. 52.
    Duggan, D. E., and R. M. Noll. 1972. Effects of ethacrynic acid upon membrane ATPase of dog kid-ney in vivo and in vitro. Proc. Soc. Exp. Biol. Med. 139: 762–767.Google Scholar
  53. 53.
    Nechay, B. R., and R. R. Contreras. 1972. In vivo effect of ethacrynic acid on renal adenosinetriphosphatase in dog and rat. J. Pharmacol. Exp. Ther. 183: 127–136.Google Scholar
  54. 54.
    Burg, M., and N. Green. 1973. Function of the thick ascending limb of Henle’s loop. Am. J. Physiol. 224: 659–668.PubMedGoogle Scholar
  55. 55.
    Schmidt, U., and U. C. Dubach. 1969. Activity of (Na+,K+)-stimulated adenosinetriphosphatase in the rat nephron. Pfluegers Arch. 306: 219–226.CrossRefGoogle Scholar
  56. 56.
    Bonjour, J. P., R. G. G. Russell, D. B. Morgan, and H. A. Fleisch. 1972. Intestinal calcium absorption, Ca-binding protein, and Ca-ATPase in diphosphonatetreated rats. Am. J. Physiol. 224: 1011–1017.Google Scholar
  57. 57.
    Schatzmann, H. J., and F. F. Vincenzi. 1969. Calcium movements across the membrane of human red cells J. Physiol. (Lond.) 201: 369–395.Google Scholar
  58. 58.
    Kinne-Saffran, E., and R. Kinne. 1974. Presence of bicarbonate stimulated ATPase in the brush border microvillus membranes of the proximal tubule. Proc. Soc. Exp. Biol. Med. 146: 751–753.PubMedGoogle Scholar
  59. 59.
    Whittam, R. 1962. The asymmetrical stimulation of a membrane adenosine triphosphatase in relation to active cation transport. Biochem. J. 84: 110–118.PubMedGoogle Scholar
  60. 60.
    Caldwell, P. C., A. L. Hodgkin, R. D. Keynes, and T. I. Shaw. 1960. The effects of injecting “energy-rich” phosphate compounds on the active transport of ions in the giant axons of Loligo. J. Physiol. (Loud.) 152: 561–590.Google Scholar
  61. 61.
    Mullins, L. J., and F. J. Brinley. 1969. Potassium fluxes in dialyzed squid axons. J. Gen. Physiol. 53: 704–740.PubMedCrossRefGoogle Scholar
  62. 62.
    Forte, J. G. 1971. Hydrochloric acid secretion by gastric mucosa. In: Membranes and Ion Transport, Vol. 3. E. E. Bittar, ed. Wiley (Interscience), New York. pp. 111–165.Google Scholar
  63. 63.
    Rehm, W. S. 1972. Proton transport. In: Metabolic Pathways, 3rd ed., Vol. 6: Metabolic Transport. L. E. Hokin, ed. Academic Press, New York. pp. 187242.Google Scholar
  64. 64.
    Durbin, R. P., and D. Alonso. 1977. Gastric secretion. In: Scientific Basis of Gastroenterology. B. Duthie and K. G. Wormsley, eds. Churchill, London.Google Scholar
  65. 65.
    Durbin, R. P., and D. K. Kasbekar. 1965. Adenosine triphosphate and active transport by the stomach. Fed. Proc. 24: 1377–1381.PubMedGoogle Scholar
  66. 66.
    Durbin, R. P. 1973. Secretory events in gastric mucosa. In: Current Topics in Membranes and Trans- port, Vol. 4. F. Bronner and A. Kleinzeller, Academic Press, New York. pp. 305–322.Google Scholar
  67. 67.
    Durbin, R. P. 1968. Utilization of high-energy phosphate compounds by stomach. J. Gen. Physiol. 51: 233s - 239s.PubMedGoogle Scholar
  68. 68.
    Lee, J., G. Simpson, and P. Scholes. 1974. An ATPase from dog gastric mucosa: Changes of outer pH in suspension of membrane vesicles accompanying ATP hydrolysis. Biochem. Biophys. Res. Commun. 60: 825–832.PubMedCrossRefGoogle Scholar
  69. 69.
    Sachs, G., E. Rabon, G. Saccomani, and H. M. Sarau. 1975. Redox and ATP in gastric secretion. Ann. N.Y. Acad. Sci. 264: 456–475.PubMedCrossRefGoogle Scholar
  70. 70.
    Fimognari, G. M., G. A. Porter, and I. S. Edelman. 1967. The role of the tricarboxylic acid cycle in the action of aldosterone on sodium transport. Biochim. Biophys. Acta 135: 89–99.CrossRefGoogle Scholar
  71. 71.
    Sharp, G. W. G., and A. Leaf. 1965. Metabolic requirements for active sodium transport stimulated by aldosterone. J. Biol. Chem. 240: 4816–4821.PubMedGoogle Scholar
  72. 72.
    Fanestil, D. D., G. A. Porter, and I. S. Edelman. 1965. Aldosterone stimulation of sodium transport. Biochim. Biophys. Acta 135: 74–88.Google Scholar
  73. 73.
    Taylor, A., J. J. Hess, and R. H. Maffly. 1973. The effects of propionate on sodium transport by the toad bladder. Evidence for a metabolic mode of action. Biochim. Biophys. Acta 298: 376–392.PubMedCrossRefGoogle Scholar
  74. 74.
    Klein, R. L., C. R. Horton, and A. Thureson-Klein. 1968. Evidence for an amino acid transport system in nuclei isolated from embryonic heart. Eur. J. Biochem. 6: 514–524.PubMedCrossRefGoogle Scholar
  75. 75.
    Cereijo-Santaló, R. 1970. Ion movements in mitochondria. In: Membranes and Ion Transport, Vol. 2. E. E. Bittar, ed. Wiley (Interscience), New York. pp. 229–258.Google Scholar
  76. 76.
    Moore, C., and B. C. Pressman. 1964. Mechanism of action of valinomycin on mitochondria. Biochem. Biophys. Res. Commun. 15: 562–567.CrossRefGoogle Scholar
  77. 77.
    Reynafarje, B., and A. L. Lehninger. 1974. Superstoichiometry of H+ ejection on addition of Cat+ pulses to mitochondria. In: Dynamics of Energy-Transducing Membranes. B. B. A. Library, Vol. 13. L. Ernster, R. W. Estabrook, and E. C. Slater, eds. Elsevier, Amsterdam pp. 447–454.Google Scholar
  78. 78.
    Brierley, G. P., M. Jurkowitz, K. M. Scott, and A. J. Merola. 1970. Ion transport by heart mitochondria. J. Biol. Chem. 245: 5404–5411.PubMedGoogle Scholar
  79. 79.
    Mitchell, P., and J. Moyle. 1968. Proton translocation coupled to ATP hydrolysis in rat liver mitochondria. Eur. J. Biochem. 4: 530–539.PubMedCrossRefGoogle Scholar
  80. 80.
    Christensen, H. N. 1975. Biological Transport, 2nd ed. Benjamin, New York. Chap. 10.Google Scholar
  81. 81.
    Pressman, B. C., and H. A. Lardy. 1955. Further studies on the potassium requirements of mitochondria. Biochim. Biophys. Acta 18: 482–487.PubMedCrossRefGoogle Scholar
  82. 82.
    Tedeschi, H. 1971. Mitochondrial compartments: A comparison of two models. In: Current Topics in Membranes and Transport, Vol. 2. F. Bronner and A. Kleinzeller, Academic Press, New York. pp. 207–231.CrossRefGoogle Scholar
  83. 83.
    Rottenberg, H. 1970. ATP synthesis and electrical membrane potential in mitochondria. Eur. J. Biochem. 15:22–28.Google Scholar
  84. 84.
    Mitchell, P. 1966. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Glynn Research Laboratories, Bodmin, Cornwall, England.Google Scholar
  85. 85.
    Lardy, H. A., and S. M. Ferguson. 1969. Oxidative phosphorylation in mitochondria. Annu. Rev. Biochem. 38: 991–1034.PubMedCrossRefGoogle Scholar
  86. 86.
    Lardy, H. A., and H. Wellman. 1952. Oxidative phosphorylations: Role of inorganic phosphate and acceptor systems in control of metabolic rates. J. Biol. Chem. 195: 215–224.PubMedGoogle Scholar
  87. 87.
    Boyer, P. D. 1974. Conformational coupling in biological energy transductions. In: Dynamics of EnergyTransducing Membranes. L. Ernster, R. W. Esta-brook, and E. C. Slater, eds. Elsevier, Amsterdam. pp. 289–301.Google Scholar
  88. 88.
    Quagliariello, E., S. Papa, A. J. Meijer, and J. M. Tager. 1969. Substrate transport in mitochondria and control of metabolism. In: Mitochondria: Structure and Function. L. Ernster and Z. Drahota, eds. Academic Press, New York. pp. 335–346.Google Scholar
  89. 89.
    Lehninger, A. L., and D. Neubert. 1961. Effect of oxytocin, vasopressin, and other disulfide hormones on uptake and extrusion of water by mitochondria. Proc. Natl. Acad. Sci. U.S.A. 47: 1929–1936.PubMedCrossRefGoogle Scholar
  90. 90.
    Dow, D. S. 1970. Characteristics of thyroxine swelling in skeletal muscle mitochondria: Relationship to valinomycin swelling and swelling in the absence of Mg++. Bioenergetics 1: 423–443.CrossRefGoogle Scholar
  91. 91.
    Fang, M., and H. Rasmussen. 1964. Parathyroid hormone and mitochondrial respiration. Endocrinology 75: 434–445.PubMedCrossRefGoogle Scholar
  92. 92.
    Cash, W. D., M. Gardy, W. J. C. Amend, Jr., and F. O. Evans, Jr. 1964. Influence of low levels of metal ion contaminants on the mitochondrial swelling activity of 8-lysine-vasopressin preparations. Biochem. Biophys. Res. Commun. 17: 655–661.CrossRefGoogle Scholar
  93. 93.
    Conway, E. J. 1951. The biological performance of osmotic work. A redox pump. Science 113: 270–273.PubMedCrossRefGoogle Scholar
  94. 94.
    Conway, E. J. 1953. A redox pump for the biological performance of osmotic work, and its relation to the kinetics of free ion diffusion across membranes. Int. Rev. Cytol. 2: 419–445.CrossRefGoogle Scholar
  95. 95.
    Conway, E. J. 1955. Evidence for a redox pump in the active transport of cation. Int. Rev. Cytol. 4: 377–396.CrossRefGoogle Scholar
  96. 96.
    Forte, J. G., and R. E. Davies. 1964. Relation between hydrogen ion secretion and hydrogen uptake by gastric mucosa. Am. J. Phys. 206: 218–222.Google Scholar
  97. 97.
    Hersey, S. J., and F. F. J•bsis. 1969. Redox changes in the respiratory chain related to acid secretion by the intact gastric mucosa. Biochem. Biophys. Res. Commun. 36: 243–250.PubMedCrossRefGoogle Scholar
  98. 98.
    Kidder, G. W., III, P. F. Curran, and W. S. Rehm. 1966. Interactions between cytochrome system and H ion secretion in bullfrog gastric mucosa. Am. J. Physiol. 211: 513–519.PubMedGoogle Scholar
  99. 99.
    Hersey, S. J., T. W. Simon, and C. Baste. 1975. Histochemical location of cytochrome oxidase in gastric mucosa. J. Histochem. Cytochem. 23: 271–282.CrossRefGoogle Scholar
  100. 100.
    Neumann, K. H., and F. C. Rector, Jr. 1976. Mechanism of NaCl and water reabsorption in the proximal convoluted tubule of rat kidney. J. Clin. Invest. 58: 1110–1118.PubMedCrossRefGoogle Scholar
  101. 101.
    Barrait, L. J., F. C. Rector, J. P. Kokko, and D. W. Seldin. 1974. Factors governing the transepithelial po Oligomycin and active transport reactions in cell membranes. Nature 203: 720–724.Google Scholar
  102. 102.
    Green, R., and G. Giebisch. 1975. Ionic requirements of proximal tubule sodium transport. 1. Bicarbonate and chloride. Am. J. Physiol. 229: 1205–1215.PubMedGoogle Scholar
  103. 103.
    Besarab, A., P. Silva, B. Ross, and F. H. Epstein. 1975. Bicarbonate and sodium reabsorption by the isolated perfused kidney. Am. J. Physiol. 228: 15251530.Google Scholar
  104. 104.
    Ross, B., A. Leaf, P. Silva, and F. H. Epstein. 1974. Na-K-ATPase in sodium transport by the perfused rat kidney. Am. J. Physiol. 226: 624–629.PubMedGoogle Scholar
  105. 105.
    Whittembury, G. 1968. Sodium and water transport in kidney proximal tubular cells. J. Gen. Physiol. 51: 303–314.PubMedGoogle Scholar
  106. 106.
    Whittembury, G., and J. Fishman. 1969. Relation between cell Na extrusion and transtubular absorption in the perfused toad kidney: The effect of K, ouabain and ethacrynic acid. Pfluegers Arch. 307: 138–153.CrossRefGoogle Scholar
  107. 107.
    Whittembury, G. 1965. Sodium extrusion and potassium uptake in guinea pig kidney cortex slices. J. Gen. Physiol. 48: 699–717.PubMedCrossRefGoogle Scholar
  108. 108.
    Whittembury, G. 1971. Role of peritubular ion exchange on net Na reabsorption by the kidney tubule. Acta Cient. Venez. 22:79–82 (Suppl. 2 )Google Scholar
  109. 109.
    Besarab, A., P. Silva, and F. H. Epstein. 1976. Multiple pumps for sodium reabsorption by the perfused kidney. Kidney Int. 10: 147–153.PubMedCrossRefGoogle Scholar
  110. 110.
    Fujimoto, M., F. D. Nash, and R. H. Kessler. 1964. Effects of cyanide, Q0, and dinitrophenol on renal sodium reabsorption and oxygen consumption. Am. J. Physiol. 206: 1327–1332.PubMedGoogle Scholar
  111. 111.
    Urbaitis, B. D., and R. H. Kessler. 1971. Actions of inhibitor compounds on adenine nucleotides of renal cortex and sodium excretion. Am. J. Physiol. 220: 1116–1123.PubMedGoogle Scholar
  112. 112.
    Martinez-Maldonado, M., G. Eknoynan, and W. Suki. 1970. Inhibition of renal tubular sodium reabsorption by DNP. Am. J. Physiol. 219: 1242–1247.PubMedGoogle Scholar
  113. 113.
    Weiner, I. M., L. Roth, and T. W. Skulan. 1971. Effects of dinitrophenol and cyanide on Tpa5 and Na reabsorption. Am. J. Physiol. 221: 86–91.PubMedGoogle Scholar
  114. 114.
    Weinstein, S. W. 1970. Proximal tubular energy metabolism, sodium transport, and permeability in the rat. Am. J. Physiol. 219: 978–981.PubMedGoogle Scholar
  115. 115.
    Chertok, R. J., W. H. Hulet, and B. Epstein. 1966. Effects of cyanide, amital and DNP on renal sodium absorption. Am. J. Physiol. 221: 1379–1382.Google Scholar
  116. 116.
    Baltscheffsky, H., and M. Baltscheffsky. 1974. Electron transport phosphorylation. Annu. Rev. Biochem. 43: 871–897.PubMedCrossRefGoogle Scholar
  117. 117.
    Slater, E. C. 1953. Mechanism of phosphorylation in the respiratory chain. Nature 172: 975–978.PubMedCrossRefGoogle Scholar
  118. 118.
    Robinson, J. D. 1971. Effects of oligomycin on the (Na+-K+)-dependent adenosine triphosphatase Mol. Pharmacol. 7: 238–246.PubMedGoogle Scholar
  119. 119.
    Hexum, T., F. E. Samson, Jr., and R. H. Hines. 1970. Kinetic studies of membrane (Na+-K+-Mg2+)ATPase. Biochim. Biophys. Acta 212: 322–331.PubMedCrossRefGoogle Scholar
  120. 120.
    Glynn, I. M., J. F. Hoffman, and V. L. Lew. 1971. Some “partial reactions” of the sodium pump. Philos. Trans. R. Soc. Lond. (Biol.) 262: 91–102.CrossRefGoogle Scholar
  121. 121.
    Van Rossum, G. D. V. 1963. Net sodium and potassium movements in liver slices prepared from rats of different foetal and postnatal ages. Biochim. Biophys. Acta 74:1–14.Google Scholar
  122. 122.
    Van Rossum, G. D. V. 1972. The relation of sodium and potassium ion transport to the respiration and adenine nucleotide content of liver cells treated with inhibitors of respiration. Biochem. J. 129: 427–438.PubMedGoogle Scholar
  123. 123.
    Hempling, H. G. 1966. Sources of energy for the transport of potassium and sodium across the membrane of the Ehrlich mouse ascites tumor cell. Biochim. Biophys. Acta 112: 503–518.CrossRefGoogle Scholar
  124. 124.
    Bricker, N. S., and S. Klahr. 1966. Effects of dinitrophenol and oligomycin on the coupling between anaerobic metabolism and anaerobic sodium transport by the isolated turtle bladder. J. Gen. Physiol. 49: 483–499.PubMedCrossRefGoogle Scholar
  125. 125.
    Guerra, L., S. Klahr, W. Beauman, C. Marchena, J. Bourgoignie, and N. S. Bricker. 1969. Effects of oligomycin on anaerobic sodium transport and metabolism in shark erythrocytes. Am. J. Physiol. 217: 12921297.Google Scholar
  126. 126.
    Ling, G. N., C. Miller, and M. M. Ochsenfeld. 1973. The physical state of solutes and water in living cells according to the association-induction hypothesis. Ann. N.Y. Acad. Sci. 204: 6–50.PubMedCrossRefGoogle Scholar
  127. 127.
    Ling, G. N. 1962. A Physical Theory of the Living State. Ginn ( Blaisdell ). Boston.Google Scholar
  128. 128.
    Ling, G. N., and F. W. Cope. 1969. Potassium ion: Is the bulk of intracellular K+ adsorbed? Science 163: 1335–1336.PubMedCrossRefGoogle Scholar
  129. 129.
    Gulati, J., M. M. Ochsenfeld, and G. N. Ling. 1971. Metabolic cooperative control of electrolyte levels by adenosine triphosphate in the frog muscle. Biophys. J. 11: 973–980.PubMedCrossRefGoogle Scholar
  130. 130.
    Rotunno, C. A., V. Kowalewski, and M. Cereijido. 1967. Nuclear spin resonance evidence for complex-ing of sodium in frog skin. Biochim. Biophys. Acta 135: 170–173.PubMedCrossRefGoogle Scholar
  131. 131.
    Cope, F. W. 1967. NMR evidence for complexing of Na+ in muscle, kidney and brain, and by actinomyosin. The relation of cellular complexing of Na+ to water structure and to transport kinetics. J. Gen. Physiol. 50: 1353–1375.PubMedCrossRefGoogle Scholar
  132. 132.
    Ling, G. N., and G. Bohr. 1971. Studies of ionic distribution in living cells. IV. Effect of ouabain on the equilibrium concentrations of Cs+, Rb+, K+, Nat, and Li+ ions in frog muscle cells. Physiol. Chem. Phys. 3: 573–583.Google Scholar
  133. 133.
    Ling, G. N. 1973. How does ouabain control the levels of cell K+ and Nat? By interference with a Na pump or by allosteric control of K+-Na+ adsorption on cytoplasmic protein sites? Physiol. Chem. Phys. 5: 295–311.PubMedGoogle Scholar
  134. 134.
    Ling, G. N. 1965. The membrane theory and other views for solute permeability, distribution, and trans phys. 78: 587–597.Google Scholar
  135. 135.
    Freedman, J. C. 1973. Discussion paper: Do red cell survey of toxic antibodies in respiratory, phosphory- ghosts pump sodium or potassium? Ann. N.Y. Acad. lative and glycolytic systems. Arch. Biochem. Bio- Sci. 204: 609–615.Google Scholar
  136. 136.
    Hazlewood, C. F. 1972. Pumps or no pumps. Science Whittam, R., K. P. Wheeler, and A. Blake. 1964. 177: 815–816.Google Scholar
  137. 137.
    Troshin, A. S. 1%6. Problems of Cell Permeability. W. K. Widdes, ed. Translated by M. G. Hall. Perga-mon, Oxford.Google Scholar
  138. 138.
    Muffins, L. J., and F. J. Brinley, Jr. 1969. Potassium fluxes in dialyzed squid axons. J. Gen. Physiol. 53: 704–740.CrossRefGoogle Scholar
  139. 139.
    Lassen, U. V. 1965. Transient inhibition of rubidium-86 transport in Ehrlich ascites-tumor cells by glucose. Biochim. Biophys. Acta 94: 423–431.PubMedCrossRefGoogle Scholar
  140. 140.
    Moake, J. L., K. Ahmed, N. R. Bachur, and D. E. Gutfreund. 1970. Mgt+-dependent, (Na++K+)-stimulated ATPase of human platelets. Properties and inhibition by ADP. Biochim. Biophys. Acta 211: 337–344.CrossRefGoogle Scholar
  141. 141.
    Hexum, T., F. E. Samson, Jr., and R. H. Hines. 1970. Kinetic studies of membrane (Na+-K+-Mg2+)ATPase. Biochim. Biophys. Acta 212: 322–331.PubMedCrossRefGoogle Scholar
  142. 142.
    Glynn, I. M., J. F. Hoffman, and V. L. Lew. 1971. Some “partial reactions” of the sodium pump. Philos. Trans. R. Soc. Lond. (Biol.) 262: 91–102.CrossRefGoogle Scholar
  143. 143.
    Glynn, I. M., and S. J. D. Karlish. 1976. ATP hydrolysis associated with an uncoupled sodium flux through the sodium pump: Evidence for allosteric effects of intracellular ATP and extracellular sodium. J. Physiol (Lond.) 256: 465–496.Google Scholar
  144. 144.
    Glynn, I. M., and J. F. Hoffman. 1971. Nucleotide requirements for sodium-sodium exchange catalysed by the sodium pump in human red cells. J. Physiol. (Lond.) 218: 239–256.Google Scholar
  145. 145.
    DeWeer, P. 1970. Effects of intracellular ADP and Pi on the sodium pump of squid giant axon. Nature 226: 1251–1252.PubMedCrossRefGoogle Scholar
  146. 146.
    DeWeer, P. 1974. Na+,K+ exchange and Na+,Na+ exchange in the giant axon of the squid. Ann. N.Y. Acad. Sci. 242: 434–444.PubMedCrossRefGoogle Scholar
  147. 147.
    DeWeer, P. 1970. Effects of intracellular adenosine5’-diphosphate and orthophosphate on the sensitivity of sodium efflux from squid axon to external sodium and potassium. J. Gen. Physiol. 56: 583–620.PubMedCrossRefGoogle Scholar
  148. 148.
    Kennedy, B. G., and P. De Weer. 1976. Strophanthidin-sensitive sodium fluxes in DNFB-treated skeletal muscle. Biophys. J. 16: 30a.Google Scholar
  149. 149.
    De Weer, P. 1972. In discussion following: E. Kirsten, R. Kirsten, and A. Salibian. A study on the effect of aldosterone on the extra mitochondrial adenine nucleotide system in rat kidney. J. Steroid Biochem. 3: 173–179.Google Scholar
  150. 150.
    Whittembury, G., N. Sugino, and A. K. Solomon. 1960. Effect of anti-diuretic hormone and calcium on the equivalent pore radius of kidney slices from Necturus. Nature 187: 699–701.CrossRefGoogle Scholar
  151. 151.
    Gdrdos, G. 1967. Studies on potassium permeability changes in human erthyrocytes. Experientia 23: 19–20.CrossRefGoogle Scholar
  152. 152.
    Benesch, R., and R. E. Benesch. 1968. Oxygenation and ion transport in red cells. Science 160: 83.PubMedCrossRefGoogle Scholar
  153. 153.
    Clark, M. G., and H. A. Lardy. 1975. Regulation of intermediary carbohydrate metabolism. In: Biochemistry, Series One, Vol. 5: Biochemistry of Carbohydrates. W. J. Whelan, Ed. Butterworth, London.Google Scholar
  154. 154.
    Minakami, S., K. Kakinuma, and H. Yoshikawa. 1964. The control of erythrocyte glycolysis by active cation transport. Biochim. Biophys. Acta 90: 434–436.PubMedCrossRefGoogle Scholar
  155. 155.
    Parker, J. C., and J. F. Hoffman. 1967. The role of membrane phosphoglycerate kinase in the control of glycolytic rate by active cation transport in human red blood cells. J. Gen. Physiol. 50: 893–916.PubMedCrossRefGoogle Scholar
  156. 156.
    Schrier, S. L., and L. S. Doak. 1963. Studies of the metabolism of human erythrocyte membranes. J. Clin. Invest. 42: 756–766.PubMedCrossRefGoogle Scholar
  157. 157.
    Whittam, R. 1961. Active cation transport as a pacemaker of respiration. Nature 191: 603–604.PubMedCrossRefGoogle Scholar
  158. 158.
    Chance, B., and G. Hollunger. 1963. Inhibition of electron and energy transfer in mitochondria. I. Effects of amytal, thiopental, rotenone, progesterone and methylene glycol. J. Biol. Chem. 238: 418–431.PubMedGoogle Scholar
  159. 159.
    Chance, B., and G. R. Williams 1955. Respiratory enzymes and oxidative phosphorylation. I. Kinetics of oxygen utilization. J. Biol. Chem. 217: 383–393.PubMedGoogle Scholar
  160. 160.
    Chance, B., and G. R. Williams 1956. The respiratory chain in oxidative phosphorylation. Adv. Enzymol. 17: 65–134.Google Scholar
  161. 161.
    Van Rossum, G. D. V. 1964. Observations on the fluorescence emitted by slices of rat liver and avian salt gland. Biochim. Biophys. Acta 88: 507–516.Google Scholar
  162. 162.
    Van Rossum, G. D. V. 1966. Effects of potassium, ouabain and valinomycin on the efflux of 29Na+ and pyridine nucleotides of rat-liver slices. Biochim. Biophys. Acta 122: 323–332.CrossRefGoogle Scholar
  163. 163.
    Van Rossum, G. D. V. 1968. Relation of the oxidoreduction level of electron carriers to ion transport in slices of avian salt gland. Biochim. Biophys. Acta 153: 124–131.PubMedCrossRefGoogle Scholar
  164. 164.
    Canessa-Fischer, M., and R. P. Davis. 1967. Metabolic control reactions of the intact urinary bladder of the toad. J. Cell. Physiol. 67: 345–354.CrossRefGoogle Scholar
  165. 165.
    Klingenberg, M. 1968. In: Biological Oxidations. T. P. Singer, ed. Wiley, New York. pp. 3–54.Google Scholar
  166. 166.
    Klingenberg, M., H. W. Heldt, and E. Pfaff. 1969. The role of adenine nucleotide translocation in the generation of phosphorylation energy. In: Energy Level and Metabolic Control in Mitochondria. S. Papa, J. M. Tager, E. Quagliariello, and E. C. Slater, eds. Adriatica Editrice, Bari. pp. 237–253.Google Scholar
  167. 167.
    Atkinson, D. E. 1971. Adenine nucleotides as stoichiometric coupling agents in metabolism and as regulatory modifiers: The adenylate energy charge. In: Metabolic Pathways, 3rd ed., Vol. 5: Metabolic Regulation. H. J. Vogel, ed. Academic Press, New York. pp. 1–21.Google Scholar
  168. 168.
    Atkinson, D. E. 1968. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7: 4030–4040.PubMedCrossRefGoogle Scholar
  169. 169.
    Stubbs, M., R. L. Veech, and H. A. Krebs. 1972. Control of the redox state of the nicotinamide-adenine dinucleotide couple in rat liver cytoplasm. Biochem. J. 126: 59–65.PubMedGoogle Scholar
  170. 170.
    Wilson, D. F., M. Stubbs, N. Oshino, and M. Erecinska. 1974. Thermodynamic relationships between the mitochondrial oxidation-reduction reactions and cellular ATP levels in ascites tumor cells and perfused rat liver. Biochemistry 13: 5305–5311.PubMedCrossRefGoogle Scholar
  171. 171.
    Wilson, D. F., C. Owen, L. Mela, and L. Weiner. 1973. Control of mitochondrial respiration by the phosphate potential. Biochem. Biophys. Res. Commun. 53: 326–333.PubMedCrossRefGoogle Scholar
  172. 172.
    Owen, C. S., and D. F. Wilson. 1974. Control of respiration by the mitochondrial phosphorylation state. Arch. Biochem. Biophys. 161: 581–591.PubMedCrossRefGoogle Scholar
  173. 173.
    Erecinska, M., R. L. Veech, and D. F. Wilson. 1974. Thermodynamic relationships between the oxidation-reduction reactions and the ATP synthesis in suspensions of isolated pigeon heart mitochondria. Arch. Biochem. Biophys. 160: 412–421.PubMedCrossRefGoogle Scholar
  174. 174.
    Wilson, D. F., and M. Ereciríska. 1972. Thermodynamic relationships between the phosphate potential and oxidation reduction potentials in the respiratory chain. In: Mitochondria/Biomembranes. North-Holland Publ., Amsterdam. pp. 119–132.Google Scholar
  175. 175.
    Wilson, D. F., M. Erecihska, C. S. Owen, and L. Mela. 1974. Thermodynamic relationships in mitochondrial oxidative phosphorylation and respiratory control. In: Dynamics of Energy-Transducing Membranes. L. Ernster, R. W. Estabrook, and E. C. Slater, eds. Elsevier, Amsterdam. pp. 221–231.Google Scholar
  176. 176.
    Wilson, D. F., P. L. Dutton, and M. Wagner. 1973. Energy-transducing components in mitochondrial respiration. In: Current Topics in Bioenergetics, Vol. 5. D. F. Wilson, P. S. Dutton, and M. Wagner, Academic Press, New York. pp. 233–265.Google Scholar
  177. 177.
    Williamson, D. H., P. Lund, and H. A. Krebs. 1967. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103: 514–527.PubMedGoogle Scholar
  178. 178.
    Weidemann, M. J., H. Erdelt, and M. Klingenberg. 1970. Adenine nucleotide translocation of mitochondria. Eur. J. Biochem. 16: 313–335.PubMedCrossRefGoogle Scholar
  179. 179.
    Lubin, M. 1964. Cell potassium and the regulation of protein synthesis. In: Cellular Functions of Membrane Transport. J. F. Hoffman, ed. Prentice-Hall, Englewood Cliffs, New Jersey. pp. 193–211.Google Scholar
  180. 180.
    Sucher, C. H. 1970. Enzymes activated by monovalent cations. Science 168: 789–795.CrossRefGoogle Scholar
  181. 181.
    Boyer, P. D., H. A. Lardy, and P. H. Phillips. 1943. Further studies on the role of potassium and other ions in the phosphorylation of the adenylic system. J. Biol. Chem. 149: 529–541.Google Scholar
  182. 182.
    Fansler, B., and J. M. Lowenstein. 1969. Aconitase from beef heart. In: Methods in Enzymology, Vol. 13: Citric Acid Cycle. M. J. Lowenstein, ed. Academic Press, New York. p. 26.Google Scholar
  183. 183.
    Keech, B., and G. J. Barritt. 1967. Allosteric activation of sheep kidney pyruvate carboxylase by the magnesium ion (Mg2+) and the magnesium adenosine triphosphate ion (Mg-ATP2-). J. Biol. Chem. 242: 1983–1987.PubMedGoogle Scholar
  184. 184.
    Pressman, B. C., and H. A. Lardy. 1952. Influence of potassium and other alkali cations on respiration of mitochondria. J. Biol. Chem. 197: 547–556.PubMedGoogle Scholar
  185. 185.
    Pressman, B. C., and H. A. Lardy, 1955. Further studies on the potassium requirements of mitochondria. Biochim. Biophys. Acta 18: 482–487.PubMedCrossRefGoogle Scholar
  186. 186.
    Gómez-Puyou, A., F. Sandoval, E. Chavez, and M. Tuena. 1970. On the role of K+ on oxidative phosphorylation. J. Biol. Chem. 245: 5239–5247.PubMedGoogle Scholar
  187. 187.
    Reiman, A. S. 1972. Metabolic consequences of acid-base disorders. Kidney Int. 1: 347–359.CrossRefGoogle Scholar
  188. 188.
    Wrigglesworth, J. M., and L. Packer. 1970. pH-dependent changes in mitochondrial membrane structure. Bioenergetics 1: 33–43.Google Scholar
  189. 189.
    Lowenstein, J. M., and B. Chance. 1968. The effect of hydrogen ions on the control of mitochondrial respiration. J. Biol. Chem. 243: 3940–3946.PubMedGoogle Scholar
  190. 190.
    Myers, D. K., and E. C. Slater. 1957. The enzymic hydrolysis of adenosine triphosphate by liver mitochondria. 2. Effect of inhibitors and added cofactors. Biochem. J. 67: 572–579.PubMedGoogle Scholar
  191. 191.
    Leaf, A. 1970. Regulation of intracellular fluid volume and disease. Am. J. Med. 49: 291–295.PubMedCrossRefGoogle Scholar
  192. 192.
    Kean, E. L., P. H. Adams, R. W. Winters, and R. E. Davies. 1961. Energy metabolism of the renal medulla. Biochim. Biophys. Acta 54: 474–478.PubMedCrossRefGoogle Scholar
  193. 193.
    Lehninger, A. L. 1962. Water uptake and extrusion by mitochondria in relation to oxidative phosphorylation. Physiol. Rev. 42: 467–517.PubMedGoogle Scholar
  194. 194.
    Nicholls, D. G., and O. Lindberg. 1972. Inhibited respiration and ATPase activity of rat liver mitochondria under conditions of matrix condensation. FEBS Lett. 25: 61–64.PubMedCrossRefGoogle Scholar
  195. 195.
    Edelman, I. S., and F. Ismail-Beigi. 1974. Thyroid thermogenesis and active sodium transport. Recent Prog. Horm. Res. 30: 235–257.PubMedGoogle Scholar
  196. 196.
    Edelman, I. S. 1975. Thyroidal regulation of renal energy metabolism and (Na+ and K+)-activated adenosine triphosphatase activity. Med. Clin. North Am. 59: 605–614.PubMedGoogle Scholar
  197. 197.
    Edelman, I. S. 1974. Thyroid thermogenesis. N. Engl. J. Med. 290: 1303–1308.PubMedCrossRefGoogle Scholar
  198. 198.
    Ludens, J. H., and D. D. Fanestil. 1976. The mechanism of aldosterone function. In: International Encyclopedia of Pharmacology and Therapeutics, Section 42. Pergamon, Oxford.Google Scholar
  199. 199.
    Fimognari, G. M., D. D. Fanestil, and I. S. Edelman. 1967. Induction of RNA and protein synthesis in the action of aldosterone in the rat. Am. J. Physiol. 213: 954–962.PubMedGoogle Scholar
  200. 200.
    Leaf, A. 1965. Transepithelial transport and its hormonal control in toad bladder. Ergeb. Physiol. 56: 216–263.PubMedCrossRefGoogle Scholar
  201. 201.
    Schmidt, U. C., J. Schmid, H. Schmid, and U. C. Dubach. 1975. Sodium-and potassium-activated ATPase. A possible target of aldosterone. J. Clin. Invest. 55: 655–660.PubMedCrossRefGoogle Scholar
  202. 202.
    Fanestil, D. D., T. S. Herman, G. M. Fimognari, and I. S. Edelman. 1968. Oxidative metabolism in aldosterone regulation of sodium transport. In: Regulatory Functions of Biological Membranes. J. Järnefelt, ed. Elsevier, Amsterdam.Google Scholar
  203. 203.
    Leaf, A., and A. D. C. MacKnight. 1972. The site of the aldosterone induced stimulation of sodium transport. J. Steroid Biochem. 3: 237–245.PubMedCrossRefGoogle Scholar
  204. 204.
    Civan, M. M., and R. E. Hoffman. 1971. Effect of aldosterone on electrical resistance of toad bladder. Am. J. Physiol. 220: 324–328.PubMedGoogle Scholar
  205. 205.
    Handler, J. S., A. S. Preston, and J. Orloff. 1969. The effect of aldosterone on glycolysis in the urinary bladder of the toad. J. Biol. Chem. 244: 3194–3199.PubMedGoogle Scholar
  206. 206.
    Kirchberger, M. A., P. Witkum, and G. W. G. Sharp. 1971. On the similarity of effects of aldosterone and adenosine 3’,5’-phosphate on Na+ transport and glucose metabolism in toad bladder. Biochim. Biophys. Acta 241: 876–883.PubMedCrossRefGoogle Scholar
  207. 207.
    Goodman, D. B. P., J. E. Allen, and H. Rasmussen. 1971. Studies on the mechanism of action of aldosterone: Hormone-induced changes in lipid metabolism. Biochemistry 10: 3825–3831.PubMedCrossRefGoogle Scholar
  208. 208.
    Kirsten, E., R. Kirsten, A. Leaf, and G. W. G. Sharp. 1968. Increased activity of enzymes of the tricarbox-ylic acid cycle in response to aldosterone in the toad bladder. Pfluegers, Arch. 300: 213–225.Google Scholar
  209. 209.
    Kirsten, R., and E. Kirsten. 1972. Redox state of pyridine nucleotides in renal response to aldosterone. Am. J. Physiol. 223: 229–235.PubMedGoogle Scholar
  210. 210.
    Handler, J. S., A. S. Preston, and J. Orloff. 1972. Effect of ADH, aldosterone, ouabain and amiloride on toad bladder epithelial cells. Am. J. Physiol. 222: 1071–1074.PubMedGoogle Scholar
  211. 211.
    Leaf, A., and A. Renshaw. 1957. Ion transport and respiration of isolated frog skin. Biochem. J. 65: 8293.Google Scholar
  212. 212.
    Leaf, A., and E. F. Dempsey. 1960. Some effects of mammalian neurohypophyseal hormones on metabolism and active transport of sodium by the isolated toad bladder. J. Biol. Chem. 235: 2160–2163.PubMedGoogle Scholar
  213. 213.
    Al-Awqati, Q., R. Beauwens, and A. Leaf. 1975. Coupling of sodium transport to respiration in the toad bladder. J. Membr. Biol. 22: 91–105.PubMedCrossRefGoogle Scholar
  214. 214.
    Lassen, U. V., and J. Hess Thaysen. 1961. Correlation between sodium transport and oxygen consump-tion in isolated renal tissue. Biochim. Biophys. Acta 47: 616–618.PubMedCrossRefGoogle Scholar
  215. 215.
    Deetjen, P., and K. Kramer. 1961. Die Abhängegkeit des 02-Verbrauchs der Niere von der Na-Rückresorption. Pfluegers Arch. 273: 636–650.CrossRefGoogle Scholar
  216. 216.
    Thurau, K. 1961. Renal Na-reabsorption and 02-uptake in dogs during hypoxia and hydrochlorothiazide infusion. Proc. Soc. Exp. Biol. Med. 106: 714–717.PubMedGoogle Scholar
  217. 217.
    Fujimoto, M., F. D. Nash, and R. H. Kessler. 1964. Effects of cyanide, Q0, and dinitrophenol on renal sodium reabsorption and oxygen consumption. Am. J. Physiol. 206: 1327–1332.PubMedGoogle Scholar
  218. 218.
    Knox, F. G., J. S. Fleming, and D. W. Rennie. 1966. Effects of osmotic diuresis on sodium reabsorption and oxygen consumption of kidney. Am. J. Physiol. 210: 751–759.PubMedGoogle Scholar
  219. 219.
    Kjekshus, J., K. Aukland, and F. Kiil. 1969. Oxygen cost of sodium reabsorption in proximal and distal parts of the nephron. Scand. J. Clin. Lab. Invest. 23: 307–316.PubMedCrossRefGoogle Scholar
  220. 220.
    Siegers, J. F. G. 1972. General principles of transport processes. Adv. Biol. Skin 12: 19–36.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Michael W. Weiner
    • 1
  • Roy H. Maffly
    • 1
  1. 1.Veterans Administration HospitalStanford University Medical ServicePalo AltoUSA

Personalised recommendations