Na and K Transport in Red Blood Cells

  • Philip B. Dunham
  • Joseph F. Hoffman

Abstract

This chapter on active transport is intended to be a rather practical treatment of the subject in terms of what active transport is, how it can be distinguished from other types of membrane transport, and a survey of its characteristics in some depth. The idea of active transport stems from the fact that cells are able to accumulate and maintain large concentration gradients of permeant substances across their plasma membranes. Because of the ubiquitous occurrence of such processes in living cells and tissues, our purpose can best be served by limiting our discussion to the active transport of the cations, Na and K, and using information derived mainly from studies on red blood cells. Thus, it is hoped that our considerations of basic principles in one cell type will emphasize those features common to all cell types rather than those differences which distinguish one cell type from another.

Keywords

Active Transport Sodium Pump Ouabain Binding Cardiotonic Steroid Impermeant Anion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, D. W. 1967. Cation transport in duck erythrocytes. Ph.D. Thesis, Duke University.Google Scholar
  2. 2.
    Bader, H., and A. K. Sen. 1966. (K+)-dependent acyl phosphatase as part of the (Nat + K+)-dependent ATPase of cell membranes. Biochim. Biophys. Acta 118: 116.Google Scholar
  3. 3.
    Battley, E. H., and I. M. Klotz. 1951. Interaction of sodium and potassium ions with hemoglobin and with hemerythrin. Biol. Bull. 101: 215.Google Scholar
  4. 4.
    Beaugé, L. A., and N. Adragna. 1971. The kinetics of ouabain inhibition and the partition of rubidium influx in human red blood cells. J. Gen. Physiol. 57: 576.PubMedCrossRefGoogle Scholar
  5. 5.
    Bergelson, L. D., and L. I. Barsukov. 1977. Topological asymmetry of phospholipids in membranes. Science 197: 244.CrossRefGoogle Scholar
  6. 6.
    Blostein, R. 1968. Relationships between erythrocyte membrane phosphorylation and adenosine triphosphate hydrolysis. J. Biol. Chem. 243: 1957.PubMedGoogle Scholar
  7. 6a.Blostein, R. 1970. Sodium activated adenosine triphosphatase activity of the erythrocyte membrane. J. Biol. Chem. 245: 270.Google Scholar
  8. 7.
    Blostein, R., and L. Chu. 1977. Sidedness of (sodium, potassium)-adenosine triphosphatase of inside-out red cell membrane vesicles. J. Biol. Chem. 252: 3035.PubMedGoogle Scholar
  9. 8.
    Bodemann, H. H., and J. F. Hoffman. 1976. Side-dependent effects of internal versus external Na and K on ouabain binding to reconstituted human red blood cell ghosts. J. Gen. Physiol. 67: 497.PubMedCrossRefGoogle Scholar
  10. 9.
    Bodemann, H. H., and J. F. Hoffman. 1976. Effects of Mg and Ca on the side dependencies of Na and K on ouabain binding to red cell ghosts and the control of Na transport by internal Mg. J. Gen. Physiol. 67: 547.PubMedCrossRefGoogle Scholar
  11. 10.
    Cavieres, J. D. 1977. The sodium pump in human red cells. In: Transport in Red Cells. J. C. Ellory and V. L. Lew, eds. Academic Press, London. p. 1.Google Scholar
  12. 11.
    Cook, J. S. 1965. The quantitative interrelationships between ion fluxes, cell swelling and radiation dose in ultraviolet hemolysis. J. Gen. Physiol. 48: 719.PubMedCrossRefGoogle Scholar
  13. 12.
    Cook, J. S. 1967. Nonsolvent water in human erythrocytes. J. Gen. Physiol. 50: 1311.PubMedCrossRefGoogle Scholar
  14. 13.
    Dalmark, M. 1975. Chloride and water distribution in human red cells. J. Physiol. 250: 65.PubMedGoogle Scholar
  15. 14.
    Danowski, T. S. 1941. The transfer of potassium across the human blood cell membrane. J. Biol. Chem. 139: 693.Google Scholar
  16. 15.
    Dean, R. B. 1941. Theories of electrolyte equilibrium in muscle. Biol. Symp. 3: 331.Google Scholar
  17. 16.
    Dick, D. A. T. 1959. Osmotic properties of living cells. Int. Rev. Cytol. 8: 387.PubMedCrossRefGoogle Scholar
  18. 16a.Dick, D.A.T. 1967. An approach to the molecular structure of the living cell by water flux studies. In: Physical Basis of Circulatory Transport. E. B. Reeve and A. G. Guyton, eds. W. B. Saunders, Philadelphia. p. 217.Google Scholar
  19. 17.
    Dunham, E. T., and Glynn, I. M. 1961. Adenosine triphosphatase activity and the active movements of alkali metal ions. J. Physiol. 156: 274.PubMedGoogle Scholar
  20. 18.
    Dunham, P. B. 1976. Passive potassium transport in LK sheep red cells. Effect of anti-L antibody and intracellular potassium. J. Gen. Physiol. 68: 567.PubMedCrossRefGoogle Scholar
  21. 19.
    Dunham, P. B., and J. S. Bleier. 1973. Potassium effluxes in goat red blood cells. Physiologist 16: 301.Google Scholar
  22. 20.
    Dunham, P. B. and R. Blostein. 1976. Active potassium transport in reticulocytes of high-K+ and low-K+ sheep. Biochim. Biophys. Acta 455: 749.PubMedCrossRefGoogle Scholar
  23. 21.
    Dunham, P. B., and J. F. Hoffman 1970. Partial purification of the ouabain-binding component and of Na,K-ATPase from human red cell membranes. Proc. Natl. Acad. Sci. U.S.A. 66: 936.PubMedCrossRefGoogle Scholar
  24. 22.
    Dunham, P. B., and O. Senyk. 1977. Lithium efflux through the Na/K pump in human erythrocytes. Proc. Natl. Acad. Sci. U.S.A. 74: 3099.PubMedCrossRefGoogle Scholar
  25. 23.
    Edzes, H. T., and H. J. C. Berendsen. 1975. The physical state of diffusible ions in cells. Biophys. Bioeng. 4: 265.CrossRefGoogle Scholar
  26. 24.
    Eisenmann, G. 1961. On the elementary atomic origin of equilibrium ionic specificity. In: Symposium on Membrane Transport and Metabolism. A. Kleinzeller and A. Kotyk, eds. Academic Press, New York. p. 163.Google Scholar
  27. 25.
    Fahn, S., M. R. Hurley, G. J. Koval, and R. W. Albers. 1966. Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. II. Effects of N-ethylmaleimide and other sulfhydryl reagents. J. Biol. Chem. 241: 1890.PubMedGoogle Scholar
  28. 26.
    Fahn, S., G. J. Koval, and R. W. Albers. 1968. Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. V. Phosphorylation by adenosine triphosphate 32P. J. Biol. Chem. 243: 1993.Google Scholar
  29. 27.
    Fitzsimons, E. J., and J. Sendroy. 1961. Distribution of electrolytes in human blood. J. Biol. Chem. 236: 1595.Google Scholar
  30. 28.
    Freedman, J. C., and J. F. Hoffman. 1977. Hemoglobin charge and membrane potentials in human red blood cells at varying volume. Abstract. XX VII International Congress on Physiological Science, Paris.Google Scholar
  31. 29.
    Fricke, H., and S. Morse. 1925. The electric resistance and capacity of blood for frequencies between 800 and 41/2 million cycles. J. Gen. Physiol. 9: 153.PubMedCrossRefGoogle Scholar
  32. 30.
    Funder, J., and J. O. Wieth. 1966. Chloride and hydrogen ion distribution between human red cells and plasma. Acta Physiol. Scand. 68: 234.CrossRefGoogle Scholar
  33. 31.
    Garay, R. P., and P. J. Garrahan. 1973. The interaction of sodium and potassium with the sodium pump in red cells. J. Physiol. 231: 297.PubMedGoogle Scholar
  34. 32.
    Gardos, G. 1954. Akkumulation der Kaliumionen durch menschliche Blutkorperchen. Acta Physiol. Hung. 6: 191.PubMedGoogle Scholar
  35. 33.
    Garrahan, P. J., and I. M. Glynn. 1967. The behaviour of the sodium pump in red cells in the absence of external potassium. J. Physiol. 192: 159.PubMedGoogle Scholar
  36. 34.
    Garrahan, P. J., and I. M. Glynn. 1967. Factors affecting the relative magnitudes of the sodium:potassium and sodium:sodium exchanges catalysed by the sodium pump. J. Physiol. 192: 189.PubMedGoogle Scholar
  37. 35.
    Garrahan, P. J., and I. M. Glynn. 1967. The stoichiometry of the sodium pump. J. Physiol. 192: 217.PubMedGoogle Scholar
  38. 36.
    Garrahan, P. J., and I. M. Glynn. 1967. The incorporation of inorganic phosphate into adenosine triphosphate by reversal of the sodium pump. J. Physiol. 192: 237.PubMedGoogle Scholar
  39. 37.
    Garrahan, P. J., M. I. Pouchan, and A. F. Rega. 1969. Potassium-activated phosphatase from human red blood cells: The mechanism of potassium activation. J. Physiol. 202: 305.PubMedGoogle Scholar
  40. 38.
    Gary-Bobo, C. M., and A. K. Solomon. 1968. Properties of hemoglobin solutions in red cells. J. Gen. Physiol. 52: 825.PubMedCrossRefGoogle Scholar
  41. 39.
    Gary-Bobo, C. M., and A. K. Solomon. 1971. Hemoglobin charge dependence on hemoglobin concentration in vitro. J. Gen. Physiol. 224: 88.Google Scholar
  42. 40.
    Glynn, I. M. 1956. Sodium and potassium movements in human red cells. J. Physiol. 134: 278.PubMedGoogle Scholar
  43. 41.
    Glynn, I. M. 1957. The action of cardiac glycosides on sodium and potassium movements in human red cell. J. Physiol. 136: 148.PubMedGoogle Scholar
  44. 42.
    Glynn, I. M., and J. F. Hoffman. 1971. Nucleotide requirements for sodium-sodium exchange catalysed by the sodium pump in human red cells. J. Physiol. 218: 239.PubMedGoogle Scholar
  45. 43.
    Glynn, I. M., J. F. Hoffman, and V. L. Lew. 1971. Some “partial reactions” of the sodium pump. Phil. Trans. Roy. Soc. Lond. B. 262: 91.CrossRefGoogle Scholar
  46. 44.
    Glynn, I. M., S. J. D. Karlish. 1975. The sodium pump. Annu. Rev. Physiol. 37: 13.PubMedCrossRefGoogle Scholar
  47. 45.
    Glynn, I. M., and S. J. D. Karlish. 1976. ATP hydrolysis associated with an uncoupled sodium flux through the sodium pump: Evidence for allosteric effects of intracellular ATP and extracellular sodium. J. Physiol. 256: 465.PubMedGoogle Scholar
  48. 46.
    Glynn, I. M., and V. L. Lew. 1970. Synthesis of adenosine triphosphate at the expense of downhill cation movements in intact human red cells. J. Physiol. 207: 393.PubMedGoogle Scholar
  49. 47.
    Glynn, I. M., V. L. Lew, and U. Lüthi. 1970. Reversal of the potassium entry mechanism in red cells, with and without reversal of the entire pump cycle. J. Physiol. 207: 371.PubMedGoogle Scholar
  50. 48.
    Goldman, D. E. 1943. Potential, impedance and rectification in membranes. J. Gen. Physiol. 27: 37.PubMedCrossRefGoogle Scholar
  51. 49.
    Harris, E. J., and M. Maize’s. 1951. The permeability of human erythrocytes to sodium. J. Physiol. 113: 506.PubMedGoogle Scholar
  52. 50.
    Harris, J. E. 1941. The influence of the metabolism of human erythrocytes on their potassium content. J. Biol. Chem. 141: 579.Google Scholar
  53. 51.
    Hilden, S., and L. Hokin. 1975. Active potassium transport coupled to active sodium transport in vesicles reconstituted from purified sodium and potassium ion-activated adenosine triphosphatase from the rectal gland of Squalus acanthis. J. Biol. Chem. 250: 6296.Google Scholar
  54. 52.
    Hille, B. 1972. The permeability of the sodium channel to metal cations in myelinated nerves. J. Gen. Physiol. 59: 637.PubMedCrossRefGoogle Scholar
  55. 53.
    Hille, B. 1973. Potassium channel in myelinated nerve. Selective permeability to small cations. J. Gen. Physiol. 61: 669.PubMedCrossRefGoogle Scholar
  56. 54.
    Hobbs, A. S., and P. B. Dunham 1975. Comparison of the effects of external monovalent cations on active cation transport and on the rate of ouabain binding in human red cells. Fed. Proc. 34: 249.Google Scholar
  57. 55.
    Hobbs, A. S., and P. B. Dunham. 1976. Evidence for two sodium sites on the external aspect of Na-K pump in human erythrocytes. Nature 260: 651.PubMedCrossRefGoogle Scholar
  58. 56.
    Höber, R. 1912. Einzweites Verfahren, die Leitfahrigkeit im Innern von Zellen zu messen. Pflugers Arch. 133: 237.CrossRefGoogle Scholar
  59. 57.
    Hodgkin, A. L., and B. Katz. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. 108: 37.PubMedGoogle Scholar
  60. 58.
    Hoffman, J. F. 1958. Physiological characteristics of human red blood cell ghosts. J. Gen. Physiol. 42: 9.PubMedCrossRefGoogle Scholar
  61. 59.
    Hoffman, J. F. 1960. The link between metabolism and the active transport of Na in human red cell ghosts. Fed. Proc. 19: 127.Google Scholar
  62. 60.
    Hoffman, J. F. 1962. The active transport of sodium by ghosts of human red blood cells. J. Gen. Physiol. 45: 837.PubMedCrossRefGoogle Scholar
  63. 61.
    Hoffman, J. F. 1966. The red cell membrane and the transport of sodium and potassium. Am. J. Med. 41: 666.PubMedCrossRefGoogle Scholar
  64. 62.
    Hoffman, J. F. 1969. The interaction between tritiated ouabain and the Na-K pump in red blood cells. J. Gen. Physiol. 54: 343s.Google Scholar
  65. 63.
    Hoffman, J. F. 1972. Sidedness of the red cell Na:K pump. In: Role of Membranes in Secretory Processes. L. Bolis, R. D. Keynes, and W. Wilbrandt, eds. North-Holland Publ., Amsterdam. p. 203.Google Scholar
  66. 63a.Hoffman, J. F., M. Eden, J. S. Barr, and R. H. S. Bedell, 1958. The hemolytic volume of human erythrocytes. J. Cell. Comp. Physiol. 51: 405.CrossRefGoogle Scholar
  67. 64.
    Hoffman, J. F., and P. L. Laris. 1974. Determination of membrane potentials in human and Amphiuma red blood cells by means of a fluorescent probe. J. Physiol. 239: 519.PubMedGoogle Scholar
  68. 65.
    Hoffman, J. F., and U. V. Lassen. 1971. Plasma membrane potentials in Amphiuma red cells. Proceeding XXV International Congress on Physiological Science, Vol. IX, Munich, p. 243.Google Scholar
  69. 66.
    Hunter, M. J. 1971. A quantitative estimate of the non-exchange-restricted chloride permeability of the human red cell. J. Physiol. 218: 49 P.Google Scholar
  70. 67.
    Hutchinson, E. 1952. Behavior of human erythrocytes in aqueous alcohol solutions. Arch. Biochem. Biophys. 38: 35.PubMedCrossRefGoogle Scholar
  71. 68.
    Jacobs, M. H., and D. R. Stewart. 1947. Osmotic properties of the erythrocyte. XII. Ionic and osmotic equilibria with a complex external solution. J. Cell. Comp. Physiol. 30: 79.CrossRefGoogle Scholar
  72. 69.
    Joiner, C. H., and P. K. Lauf. 1977. Relationship between K pump flux and 3H-ouabain binding rate in human and sheep red cells. Fed. Proc. 36: 563.Google Scholar
  73. 70.
    Jorgensen, P. L. 1974. Purification and characterization of (Na+ + K+)-ATPase. IV. Estimation of the purity and of the molecular weight and polypeptide content per enzyme unit in preparation from the outer medulla of rabbit kidney. Biochim. Biophys. Acta 356: 53.PubMedCrossRefGoogle Scholar
  74. 71.
    Jorgensen, P. L. 1975. Purification and characterization of (Nat + K+)-ATPase. V. Conformational changes in the enzyme transitions between the Na-form and the K-form studied with tryptic digestion as a tool. Biochim. Biophys. Acta 401: 399.PubMedCrossRefGoogle Scholar
  75. 72.
    Jorgensen, P. L., D. Hansen, I. M. Glynn, and J. D. Cavieres. 1973. Antibodies to pig kidney (Na+ + K+)ATPase inhibit the Na+ pump in human red cells provided they have access to the inner surface of the cell membranes. Biochim. Biophys. Acta 291: 795.PubMedCrossRefGoogle Scholar
  76. 73.
    Judah, J. D., K. Ahmed, and A. E. M. McLean. 1962. Ion transport and phosphoproteins of human red cells. Biochim. Biophys. Acta 65: 472.PubMedCrossRefGoogle Scholar
  77. 74.
    Katchalsky, A. 1970. A thermodynamic consideration of active transport. In: Permeability and Function of Biological Membranes. L. Bolls, A. Katchalsky, R. D. Keynes, W. R. Loewenstein, and B. A. Pethica, eds. North-Holland, Publ., Amsterdam. p. 20.Google Scholar
  78. 75.
    Kepner, G. R., and R. I. Macey. 1968. Membrane enzyme systems: Molecular size determinations by radiation inactivation. Biochim. Biophys. Acta 163: 188.PubMedCrossRefGoogle Scholar
  79. 76.
    Knauf, P. A., F. Proverbio, and J. F. Hoffman. 1974. Electrophoretic separation of different phosphoproteins associated with Ca-ATPase and Na,K-ATPase in human red cell ghosts. J. Gen. Physiol. 63: 324.PubMedCrossRefGoogle Scholar
  80. 77.
    Knight, A. B., and L. G. Welt. 1974. Intracellular potassium. A determinant of the sodium-potassium pump rate. J. Gen. Physiol. 63: 351.PubMedCrossRefGoogle Scholar
  81. 78.
    Kregenow, F. M. 1973. The response of duck erythrocytes to norepinephrine and an elevated extracellular potassium. J. Gen. Physiol. 61: 509.PubMedCrossRefGoogle Scholar
  82. 79.
    Lassen, U. V. 1972. Membrane potential and membrane resistance of red cells. In: Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status. M. Rtrth and P. Astrup, Benzon. Symp. Munksgaard, Copenhagen, p. 291.Google Scholar
  83. 80.
    Lew, V. L., I. M. Glynn, and J. C. Ellory. 1970. Net synthesis of ATP by reversal of the sodium pump. Nature 225: 865.Google Scholar
  84. 81.
    Maizels, M. 1968. Effect of sodium content on sodium efflux from human red cells suspended in sodium-free media containing potassium, rubidium, caesium, or lithium chloride. J. Physiol. 195: 657.PubMedGoogle Scholar
  85. 82.
    McConaghey, P. D., and M. Maizels. 1962. Cation exchanges of lactose-treated human red cells. J. Physiol. 162: 485.PubMedGoogle Scholar
  86. 83.
    Miller, D. M. 1964. Sugar uptake as a function of cell volume in human erythrocytes. J. Physiol. 170: 219.PubMedGoogle Scholar
  87. 84.
    Minakami, S., K. Kakinuma, and H. Yoshikawa. 1964. The control of erythrocyte glycolysis by active cation transport. Biochim. Biophys. Acta 90: 434.PubMedCrossRefGoogle Scholar
  88. 85.
    Morris, R., and R. D. Wright. 1954. On the interaction of hemoglobin with sodium and potassium. Austr. J. Exp. Biol. 32: 669.CrossRefGoogle Scholar
  89. 86.
    Muffins, L. J. 1975. Ion selectivity of carriers and channels. Biophys. J. 15: 921.CrossRefGoogle Scholar
  90. 87.
    Murphy, J. M. 1963. Erythrocyte metabolism: V. Active cation transport and glycolysis. J. Lab. Clin. Med. 61: 567.PubMedGoogle Scholar
  91. 88.
    Newsholme, E. A., and C. Start. 1973. Regulation in Metabolism. Wiley, London. 349 pp.Google Scholar
  92. 88a.Parker, J. C. 1973. Dog red blood cells: Adjustment of density in vivo. J. Gen. Physiol. 61: 146.CrossRefGoogle Scholar
  93. 89.
    Parker, J. C., and J. F. Hoffman. 1967. The role of membrane phosphoglycerate kinase in the control of glycolytic rate by cation transport in human red blood cells. J. Gen. Physiol. 50: 893.PubMedCrossRefGoogle Scholar
  94. 89a.Parker, J. C., and J. F. Hoffman 1976. Influences of cell volume and adrenalectomy on cation flux in dog red blood cells. Biochim. Biophys. Acta 433: 404.CrossRefGoogle Scholar
  95. 90.
    Parpart, A. K., and J. C. Schnell. 1935. Solvent water in the normal mammalian erythrocyte. J. Cell Comp. Physiol. 6: 137.CrossRefGoogle Scholar
  96. 91.
    Pen-one, J. R., and R. Blostein. 1973. Asymmetric interaction of inside-out and right-side out erythrocyte membrane vesicles with ouabain. Biochim. Biophys. Acta 291:680.Google Scholar
  97. 92.
    Ponder, E. 1948. Volume changes in hemolytic sys tems containing resorcinol, taurocholate, and saponin. J. Gen. Physiol. 31: 325.PubMedCrossRefGoogle Scholar
  98. 92a.
    92a.Ponder, E. 1948. Hemolysis and Related Phenomena. Grane and Stratton, New York. 398 pp.Google Scholar
  99. 93.
    Post, R. L., C. D. Albright, and K. Dayani. 1967. Resolution of pump and leak components of sodium and potassium ion transport in human erythrocytes. J. Gen. Physiol. 50: 1201.PubMedCrossRefGoogle Scholar
  100. 94.
    Post, R. L., and P. C. Jolly. 1957. The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane. Biochim. Biophys. Acta 25: 118.PubMedCrossRefGoogle Scholar
  101. 95.
    Post, R. L., S. Kume, T. Tobin, B. Orcutt, and A. K. Sen. 1969. Flexibility of an active center in sodiumplus-potassium adenosine triphosphatase. J. Gen. Physiol. 54: 306s.CrossRefGoogle Scholar
  102. 96.
    Post, R. L., C. R. Merritt, C. R. Kinsolving, and C. D. Albright. 1960. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J. Biol. Chem. 235: 1796.PubMedGoogle Scholar
  103. 97.
    Proverbio, F., and J. F. Hoffman. 1977. Membrane compartmentalized ATP and its preferential use by the Na,K-ATPase of human red cell ghosts. J. Gen. Physiol. 69: 605.PubMedCrossRefGoogle Scholar
  104. 98.
    Rand, R. P., and A. L. Burton. 1964. Mechanical properties of the red cell membrane. I. Membrane stiffness and intracellular pressure. Biophys. J. 4: 115.PubMedCrossRefGoogle Scholar
  105. 99.
    Rega, A. F., P. J. Garrahan, and M. I. Pouchan. 1970. Potassium-activated phosphatase from human red blood cells: The asymmetric effect of K+ Na+ Mg++ and adenosine triphosphate. J. Membrane Biol. 3: 14.CrossRefGoogle Scholar
  106. 100.
    Robinson, J. D., E. S. Hall, and P. B. Dunham. 1977. Reversal of the Na-K pump and apparent affinity for intracellular potassium. Nature 269: 165.PubMedCrossRefGoogle Scholar
  107. 101.
    Robinson, R. A., and R. H. Stokes. 1959. Electrolyte Solutions. Butterworth, London. 559 pp.Google Scholar
  108. 102.
    Roepke, R. R., and E. J. Baldes. 1942. A study of the osmotic properties of erythrocytes. J. Cell. Comp. Physiol. 20: 71.CrossRefGoogle Scholar
  109. 103.
    Rosenberg, J. 1954. The concept and definition of active transport. Symp. Soc. Exp. Biol. 8: 27.Google Scholar
  110. 104.
    Ryan, H. E., and J. F. Hoffman 1960. In: Regulation of the Inorganic Ion Content of Cells. G. E. W. Wohlstenholme and C. M. O’Connor, Ciba Foundation Study Group No. 5. J. A. Churchill, London. p. 18.Google Scholar
  111. 105.
    Sachs, J. R. 1971. Ouabain-insensitive sodium movements in the human red blood cell. J. Gen. Physiol. 57: 259.PubMedCrossRefGoogle Scholar
  112. 106.
    Sachs, J. R. 1974. Interaction of external K, Na and cardioactive steroids with the Na-K pump of the human red blood cell. J. Gen. Physiol. 63: 123.PubMedCrossRefGoogle Scholar
  113. 107.
    Sachs, J. R., J. C. Ellory, D. L. Kropp, P. B. Dunham, and J. F. Hoffman 1974. Antibody-induced alterations in the kinetic characteristics of the Na:K pump in goat red blood cells. J. Gen. Physiol. 63: 389.PubMedCrossRefGoogle Scholar
  114. 108.
    Sachs, J. R., and L. G. Welt. 1967. The concentration dependence of active potassium transport in the human red blood cell. J. Clin. Invest. 46: 65.PubMedCrossRefGoogle Scholar
  115. 109.
    Schatzmann, H. J. 1953. Herzglykoside als Hemmstoffe fur den aktiven Kalium und Natrium-transport durch die Erythrocytenmembran. Helv. Physiol. Pharmacol. Acta 11: 346.PubMedGoogle Scholar
  116. 110.
    Schrier, S. L., and L. S. Doak. 1963. Studies of the metabolism of human erythrocyte membranes. J. Clin. Invest. 42: 756.PubMedCrossRefGoogle Scholar
  117. 111.
    Sen, A. K., and R. L. Post. 1964. Stoichiometry and localization of adenosine triphosphate-dependent sodium and potassium transport in the erythrocyte. J. Biol. Chem. 239: 345.PubMedGoogle Scholar
  118. 112.
    Shaw, T. I. 1955. Potassium movements in washed erythrocytes. J. Physiol. 129: 464.PubMedGoogle Scholar
  119. 113.
    Simons, T. J. B. 1975. The interaction of ATP-analogues possessing a blocked-phosphate group with the sodium pump in human red cells. J. Physiol. 244: 731.PubMedGoogle Scholar
  120. 114.
    Skou, J. C. 1957. Influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta 23: 394.PubMedCrossRefGoogle Scholar
  121. 115.
    Solomon, A. K., T. J. Gill, and G. L. Gold. 1956. The kinetics of cardiac glycoside inhibition of potassium transport in human erythrocytes. J. Gen. Physiol. 40: 327.PubMedCrossRefGoogle Scholar
  122. 116.
    Steck, T. L., R. S. Weinstein, J. H. Straus, and D. F. H. Wallach. 1970. Inside-out red cell membrane vesicles: Preparation and purification. Science 168: 255.PubMedCrossRefGoogle Scholar
  123. 117.
    Stein, W. D., W. R. Lieb, S. J. D. Karlish, and Y. Eilam. 1973. A model for the active transport of sodium and potassium ions as mediated by a tetrameric enzyme. Proc. Natl. Acad. Sci. U.S.A. 70: 275.PubMedCrossRefGoogle Scholar
  124. 118.
    Steinbach, H. B. 1940. Sodium and potassium in frog muscle. J. Biol. Chem. 133: 695.Google Scholar
  125. 119.
    Stoner, L. C., and F. M. Kregenow. 1976. Chloride fluxes and voltage measurements in single red blood cells. Biophys. J. 16: 170a.Google Scholar
  126. 120.
    Tosteson, D. C. 1959. Halide transport in red blood cells. Acta Physiol. Scand. 46: 19.CrossRefGoogle Scholar
  127. 121.
    Tosteson, D. C., R. B. Gunn, and J. O. Wieth. 1973. Chloride and hydroxyl ion conductance of sheep red cell membranes. In: Erythrocytes, Thrombocytes and Leucocytes. E. Gerlach, K. Moser, E. Deutsch, and W. Williams, eds. Thieme, Stuttgart. p. 62.Google Scholar
  128. 122.
    Tosteson, D. C., and J. F. Hoffman. 1960. Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J. Gen. Physiol. 44: 169.PubMedCrossRefGoogle Scholar
  129. 123.
    Van Slyke, D. D., H. Wer, and F. C. McLean. 1923. Factors controlling the electrolyte and water distribution in the blood. J. Biol. Chem. 56: 765.Google Scholar
  130. 124.
    Warburg, E. 1922. Studies on carbonic acid compounds and hydrogen ion activities in blood and salt solutions. Biochem. J. 16: 153.PubMedGoogle Scholar
  131. 125.
    Whittam, R. 1962. The asymmetrical stimulation of a membrane adenosine triphosphate in relation to active cation transport. Biochem. J. 84: 100.Google Scholar
  132. 126.
    Whittam, R., and M. E. Ager. 1964. Vectorial aspects of adenosine-triphosphatase activity in erythrocyte membranes. Biochem. J. 93: 337.PubMedGoogle Scholar
  133. 127.
    Whittman, R., and M. E. Ager. 1965. The connexion between active cation transport and metabolism in erythrocytes. Biochem. J. 97: 214.Google Scholar
  134. 128.
    Wilbrandt, W. 1941. Osmotische Natur Segenarnatur nicht-osmotischer Hamolysen. (Kolloidosmotische Hamolyse). Pflugers Arch. Ges. Physiol. 245: 22.CrossRefGoogle Scholar
  135. 129.
    Williams, T. F., C. C. Fordham, W. Hollander, and L. G. Wilt. 1969. Osmotic behavior of human red blood cells. J. Clin. Invest. 38: 1587.CrossRefGoogle Scholar
  136. 130.
    Wieth, J. O., J. Funder, R. B. Gunn, and J. Brahm. 1974. Passive transport pathways for chloride and urea through the red cell membrane. In: Comparative Biochemistry and Physiology of Transport. L. Bolis,Google Scholar
  137. K. Bloch, S. E. Luria, and F. Lynen, North-Holland Publ., Amsterdam. p. 317.Google Scholar
  138. 131.
    Wintrobe, M. M. 1933. Variations in the size and hemoglobin content of erythrocytes in the blood of various vertebrates. Folia Haematol. 51: 32.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Philip B. Dunham
    • 1
  • Joseph F. Hoffman
    • 2
  1. 1.Department of BiologySyracuse UniversitySyracuseUSA
  2. 2.Department of PhysiologyYale University School of MedicineNew HavenUSA

Personalised recommendations