Electrically Neutral Ion Transport in Biomembranes

  • Robert Burns Gunn

Abstract

The purpose of this chapter is to discuss mechanisms for the transfer of ions across biomembranes which do not result in any net transfer of electrical charges. To begin with, we consider the measurement of current flow across membranes, in order to show that some ion flows are not detected by this measurement technique. Then, we develop the physical—chemical ideas behind the formation of ion pairs, and discuss several examples relevant to ion fluxes across red blood cells. No attempt has been made to consider all examples of electrically neutral exchanges that take place in biomembranes; rather, attention has been focused on principles and examples in erythrocytes.

Keywords

Chloride Transport Constant Of74 Monovalent Anion Tracer Flux Disulfonic Stilbene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bjerrum, N. 1926. Studier over Kromiklorid. Kgl. Danske Videnskab. Selskab. 4: 1 - 123.Google Scholar
  2. 2.
    Bockris, J. O. M., and A. K. N. Reddy. 1973. Modern Electrochemistry. Plenum, New York. pp. 251 - 267.CrossRefGoogle Scholar
  3. 3.
    Arrhenius, S. 1887. Über die Dissociation der in Wasser gelösten Stoffe. Z. Phys. Chem. 1: 631 - 648.Google Scholar
  4. 4.
    Handbook of Chemistry and Physics. 1975. 56th ed. CRC Press, Cleveland, Ohio. p. 152.Google Scholar
  5. 5.
    Garrels, R. M., M. E. Thompson, and R. Siever. 1961. Control of carbonate solubility by carbonate complexes. Am. J. Sci. 259: 24 - 45.CrossRefGoogle Scholar
  6. 6.
    Garrels, R. M., and M. E. Thompson. 1962. A chemical model for sea water at 25°C and one atmosphere total pressure. Am. J. Sci. 260: 57 - 66.CrossRefGoogle Scholar
  7. 7.
    Funder, J., and J. O. Wieth. 1967. Effects of some monovalent anions on fluxes of Na and K and on glucose metabolism of ouabain treated human red cells. Acta Physiol. Scan. 71: 168 - 185.CrossRefGoogle Scholar
  8. 8.
    Funder, J., and J. O. Wieth. 1974. Human red cell sodium and potassium in metabolic alkalosis. Scand. J. Clin. Lab. Invest. 34: 49 - 59.PubMedCrossRefGoogle Scholar
  9. 9.
    Funder, J., and J. O. Wieth. 1974. Combined effects of digitalis therapy and of plasma bicarbonate on human red cell sodium and potassium. Scand. J. Clin. Lab. Invest. 34: 153 - 160.PubMedCrossRefGoogle Scholar
  10. 10.
    Schatzmann, H. J. 1953. Herzglykoside als Hemmstoffe fir den Aktiven kalium und natrium Transport durch die Erythrocytenmambran. Hely. Physiol. Pharmacol. Acta 11: 346 - 354.Google Scholar
  11. 11.
    Weith, J. O., M. Dalmark, R. B. Gunn, and D. C. Tosteson. 1973. The transfer of monovalent inorganic anions through the red cell membrane. In: Erythrocytes, Thrombocytes, Leukocytes. E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, eds. Thieme, Stuttgart. pp. 71 - 76.Google Scholar
  12. 12.
    Dalmark, M., and J. O. Wieth. 1972. Temperature dependence of chloride, bromide, iodide, thiocyanate, and salicylate transport in human red cells. J. Physiol. (Lond.) 224: 553 - 610.Google Scholar
  13. 13.
    Dalmark, M. 1976. Effects of halides and bicarbonate on chloride transport in human red blood cells. J. Gen. Physiol. 67: 223 - 234.PubMedCrossRefGoogle Scholar
  14. 14.
    Kaplan, J., and H. Passow. 1974. Effects of phlorizin on net chloride movements across the valinomycintreated erythrocyte membrane. J. Membr. Biol. 19: 179 - 194.PubMedCrossRefGoogle Scholar
  15. 15.
    Tosteson, D. C., and J. F. Hoffman 1960. Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J. Gen. Physiol. 44: 169 - 194.PubMedCrossRefGoogle Scholar
  16. 16.
    Davis, J. Personal communication.Google Scholar
  17. 17.
    Haas, M., J. M. Schooler, and D. C. Tosteson. 1975. Coupling of lithium to sodium transport in human red cells. Nature 258: 425 - 427.CrossRefGoogle Scholar
  18. 18.
    Davies, C. W. 1962. Ion Association. Butterworth, London. p. 169.Google Scholar
  19. 19.
    Wieth, J. O. 1971. Erythrocytes Selektive Ionpermeabilitet. FADL’s Forlag, Copenhagen. pp. 157 - 163.Google Scholar
  20. 20.
    Wieth, J. O. 1970. Effects of monovalent cations on sodium permeability of human red cells. Acta Physiol. Scand. 79: 76 - 87.PubMedCrossRefGoogle Scholar
  21. 21.
    Sillén, L. G. 1971. Stability Constants of Metal-Ion Complexes. Special Publication No. 25 and No. 17. The Chemical Society, Burlington House, London.Google Scholar
  22. 22.
    McCorkell, R. H., M. M. Sein, and J. W. Irvine, Jr. 1968. Extraction of HMX4 acids by solvents of high dielectric constant. J. Inorg. Nucl. Chem. 30: 11551160.Google Scholar
  23. 23.
    Koskikallio, J., and S. Syrjapalo. 1965. Association of mineral acids in water with dioxane-water mixtures. Acta Chem. Scand. 19: 429 - 437.CrossRefGoogle Scholar
  24. 24.
    Gunn, R. B., J. O. Wieth, and D. C. Tosteson. 1975. Some effects of low pH on chloride exchange in human red blood cells. J. Gen. Physiol. 65: 731 - 749.PubMedCrossRefGoogle Scholar
  25. 25.
    Brazy, P. C., and R. B. Gunn. Unpublished observations.Google Scholar
  26. 26.
    Parsegian, A. 1969. Energy of an ion crossing a low dielectric membrane. Solutions to four relevant electrostatic problems. Nature 221: 844 - 846.PubMedCrossRefGoogle Scholar
  27. 27.
    Tosteson, D. C. 1959. Halide transport in red blood cells. Acta Physiol. Scand. 46: 19 - 41.CrossRefGoogle Scholar
  28. 28.
    Brahm, J. 1975. Chloride permeability in human red cells at 0-38°C. Fifth International Biophysics Congress, Copenhagen. p. 319 (Abstract).Google Scholar
  29. 29.
    Gunn, R. B., M. Dalmark, D. C. Tosteson, and J. O. Wieth. 1973. Characteristics of chloride transport in human red blood cells. J. Gen. Phvsiol. 61: 185 - 206.CrossRefGoogle Scholar
  30. 30.
    Brahm, J. 1977. Temperature dependent changes of chloride transport kinetics in human red cells. J. Gen. Physiol. 70: 283 - 306.PubMedCrossRefGoogle Scholar
  31. 31.
    Deuticke, B., and E. Gerlach. 1967. Beeinflussung von Form and Phosphat-Permeabilität menschlichen Erythrocytes durch Hämolysine, Benzol-Derivate and pharmakologisch aktive Substanzen. Klin. Wochenschr. 45: 977 - 983.PubMedCrossRefGoogle Scholar
  32. 32.
    Gunn, R. B., and D. C. Tosteson. 1976. The effect of 2,4,6-trinitro-m-cresol on cation and anion transport in sheep red blood cells. J. Gen. Physiol. 57: 593 - 609.CrossRefGoogle Scholar
  33. 33.
    Gunn, R. B., and J. A. Cooper. 1975. Effect of local anesthetics on chloride transport in erythrocytes. J. Membr. Biol. 25: 311 - 326.PubMedCrossRefGoogle Scholar
  34. 34.
    Brazy, P. C., and R. B. Gunn. 1975. Furosemide inhibition of chloride transport in human red blood cells. Physiologist 18: 151 (Abstr.).Google Scholar
  35. 35.
    Cousin, J. L., and R. Motais. 1976. The role of carbonic anhydrase inhibitors on anion permeability into ox red blood cells. J. Physiol. (Lond.) 256: 61 - 80.Google Scholar
  36. 36.
    Gunn, R. B., and R. G. Kirk. 1976. Anion transport and membrane morphology. J. Membr. Biol. 27: 265282.Google Scholar
  37. 37.
    Hunter, M. J. 1971. A quantitative estimate of the non-exchange restricted chloride permeability of the human red cell. J. Physiol. 218: 49P - 50 P.PubMedGoogle Scholar
  38. 38.
    Tosteson, D. C., R. B. Gunn, and J. O. Wieth. 1973. Chloride and hydroxyl ion conductance of sheep red cell membranes. In: Erythrocytes, Thrombocytes, Leu-kocytes. E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, eds. Thieme, Stuttgart. pp. 62 - 66.Google Scholar
  39. 39.
    Lassen, U. V., and O. Sten-Knudsen. 1968. Direct measurements of membrane potential and membrane resistance of human red cells. J. Physiol. (Lund.) 195: 681 - 696.Google Scholar
  40. 40.
    Lassen, U. V. 1972. Membrane potential and membrane resistance of red cells. In: Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status. M. Rorth and P. Astrup, eds. Munksgaard, Copenhagen. pp. 291 - 304.Google Scholar
  41. 41.
    Stoner, L. C., and F. M. Kregenow. 1976. Chloride fluxes and voltage measurements in single red blood cells. Biophys. J. 16: 170a.Google Scholar
  42. 42.
    Gunn, R. B. Unpublished observations.Google Scholar
  43. 43.
    Passow, H. 1969. Passive ion permeability of the erythrocyte membrane. Prog. Biophys. 19: 424 - 446.CrossRefGoogle Scholar
  44. 44.
    Cabantchik, Z. I., and A. Rothstein. 1974. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J. Membr. Biol. 15: 207 - 226.PubMedCrossRefGoogle Scholar
  45. 45.
    Lepke, S., H. Fasold, M. Pring, and H. Passow. 1976. A study of the relationship between inhibition of anion exchange and binding to the red blood cell membrane of 4’,4’-diisothiocyanostilbene-2,2’-disulfonic acids (DIDS) and its dihydro derivative (H2DIDS). J. Membr. Biol. 29: 147 - 177.CrossRefGoogle Scholar
  46. 46.
    Rothstein, A., Z. I. Cabantchik, M. Balshin, and R. Juliano. 1975. Enhancement of anion permeability in lecithin vesicles by hydrophobic proteins extracted from red blood cell membranes. Biochem. Biophys. Res. Commun. 64: 144 - 150.PubMedCrossRefGoogle Scholar
  47. 47.
    Gunn, R. B. 1972. A titratable carrier model for both mono-and divalent anion transport in human red blood cells. In: Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status. M. Rorth and P. Astrup, eds. Munksgaard, Copenhagen. pp. 823 - 827.Google Scholar
  48. 48.
    Bretscher, M. S. 1971. A major protein which spans the human erythrocyte membrane. J. Mol. Biol. 59: 35 1357.Google Scholar
  49. 49.
    Steck, T. L. 1974. The organization of proteins in the human red blood cell membrane. A review. J. Cell Biol. 62: 1 - 19.Google Scholar
  50. 50.
    Nicolson, G. L., and S. J. Singer. 1971. Ferritin-conjugated plant agglutinins as specific saccharide stains for electron microscopy: Application to saccharides bound to cell membranes. Proc. Natl. Acad. Sci. U.S.A. 68: 942 - 945.PubMedCrossRefGoogle Scholar
  51. 51.
    Patlak, C. S. 1957. Contributions to the theory of active transport. II. The gate type non-carrier mechanism and generalizations concerning tracer flow, efficiency, and measurement of energy expenditure. Bull. Math. Biophys. 19: 209 - 235.CrossRefGoogle Scholar
  52. 52.
    Duhm, J. and B. F. Becker. 1978. Studies on Nat-dependent Li+ countertransport and bicarbonate-stimulated Li+ transport in human erythrocytes. In: Drugs, Hormones, and Membranes. L. Bolis, J. F. Hoffman, and R. W. Staub, eds. Raven Press, N.Y. In press.Google Scholar
  53. 53.
    Funder, J., and D. C. Tosteson. 1977. Effects of bicarbonate on lithium transport in human red cells. Proc. Intl. Union. Physiol. Sci. 13:248, Abstract 724 (Paris).Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Robert Burns Gunn
    • 1
  1. 1.Department of Pharmacological and Physiological Sciences, Pritzker School of MedicineUniversity of ChicagoChicagoUSA

Personalised recommendations