Skip to main content

Ion Selectivity in Membrane Permeation

  • Chapter

Abstract

A basic function of cell membranes is discrimination in their permeability to such closely related ions as Na+ and K+, Ca2 + and Mg2 +, or Cland I. This ionic discrimination underlies such basic cellular phenomena as the generation of resting potentials, action potentials, receptor potentials, transmitter release, active transport, and enzyme activation. The present chapter has two purposes: to compare the ion discrimination observed for the passive permeation of cell membranes with that induced in artificial lipid bilayer membranes by certain ion translocators*; and to examine the most salient theories and approaches toward determining the molecular origins of ionic discrimination in membrane transport.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hille, B. 1975. Ionic selectivity of Na and K channels of nerve membranes. In: Membranes -A Series of Advances, Vol. 3. G. Eisenman, ed. Dekker, New York. pp. 255 - 324.

    Google Scholar 

  2. Diamond, J. M., and E. M. Wright. 1969. Biological membranes: The physical basis of ion and nonelectolyte selectivity. Annu. Rev. Physiol. 31: 581 - 646.

    Article  PubMed  CAS  Google Scholar 

  3. Wright, E. M., and J. M. Diamond. 1977. Anion selectivity in 12iological systems. Physiol. Rev. 57: 109 - 156.

    PubMed  CAS  Google Scholar 

  4. Eisenman, G. 1963. The influence of Na, K, Li, Rb and Cs on cellular potenti als and related phenomena. Bol. Inst. Estud. Med. Biol. (Mex.) 21: 155 - 183.

    CAS  Google Scholar 

  5. Eisenman, G., and S. Krasne. 1975. The ion selectivity of carrier molecules, membranes, and enzymes. In: MTP International Review of Science, Biochemistry Series, Vol. 2. C. F. Fox, ed. Butterworth, London. pp. 27 - 59.

    Google Scholar 

  6. Maizels, M. J. 1968. Effect of sodium content on sodium efflux from human red cells suspended in sodium-free media containing potassium, rubidium, cesium or lithium chloride. J. Physiol. (Lond.) 195: 657 - 679.

    CAS  Google Scholar 

  7. Hille, B. 1973. Potassium channels in myelinated nerve. Selective permeability to small cations. J. Gen. Physiol. 61: 669 - 686.

    Article  PubMed  CAS  Google Scholar 

  8. Cowie, D. B., and R. B. Roberts. 1955. Permeability of microorganisms to inorganic ions, amino acids and peptides. In: Electrolytes in Biological Systems. A. M. Shanes, ed. Am. Physiol. Soc., Washington, D.C. pp. 1 - 34.

    Google Scholar 

  9. Moreno, J. H., and J. M. Diamond. 1975. Cation permeation mechanisms and cation selectivity in “tight junctions” of gallbladder epithelium. In: Membranes-A Series of Advances, Vol. 3. G. Eisenman, ed. Dekker, New York. pp. 383 - 517.

    Google Scholar 

  10. Hodgkin, A. L. 1947. The effect of potassium on the surface membrane of an isolated axon. J. Physiol. 106: 319.

    PubMed  CAS  Google Scholar 

  11. Conway, E. J., and F. A. Duggan. 1958. A cation carrier in the yeast cell wall. Biochem. J. 69: 265 - 274.

    PubMed  CAS  Google Scholar 

  12. Hagiwara, S., D. C. Eaton, A. E. Stuart, and N. P. Rosenthal. 1972. Cation selectivity of the resting membrane of squid axon. J. Membr. Biol. 9: 373 - 384.

    Article  PubMed  CAS  Google Scholar 

  13. Hagiwara, S., K. Toyama, and H. Hayashi. 1971. Mechanisms of anion and cation permeations in the resting membrane of a barnacle muscle fiber. J. Gen.

    Google Scholar 

  14. Muffins, L. J. 1959. The penetration of some cations electrical properties of phospholipid bilayer mem-into muscle. J. Gen. Physiol. 42:817-829. branes. J. Membr. Biol. 1: 346 - 382.

    Google Scholar 

  15. Sjodin, R. A. 1959. Rubidium and cesium fluxes in 35. Krasne, S., and G. Eisenman 1976. The influence of muscle as related to the membrane potential. J. Gen. molecular variations of ionophore and lipid on the Physiol. 42:983-1003. selective ion permeability of membranes: I. Tetranactin

    Google Scholar 

  16. Gainer, H. See Ref. 4. and the methylation of nonactin-type carriers. J.

    Google Scholar 

  17. Braucho, H. See Ref. 12. Membr. Biol. 30: 1 - 44.

    Google Scholar 

  18. Osterhaut, W. J. V. 1939-1940. Calculations of bio- 36. Kuo, K.-H., and G. Eisenman. 1977. Na+ selective electric potentials. V. Potentials in halicystis. J. Gen. permeation of lipid bilayers mediated by a neutral iono-Physiol. 23:53. phore. Biophys. J. 17: 212a.

    Google Scholar 

  19. Baker, P. F., A. L. Hodgkin, and T. I. Shaw. 1962. The 37. Suelter, C. H. 1974. Monovalent cations in enzyme-effects of changes in internal ionic concentrations on catalyzed reactions in: Metal Ions in Biological Sys-the electrical properties of perfused giant axons. J. tems, Vol. 3. H. Sigel, ed. Dekker, New York. pp. Physiol. 164: 355-374. 201 - 251.

    Google Scholar 

  20. Berridge, M. J. 1968. Urine formation by the malpigh- 38. McClure, W. R., H. A. Lardy, and H. P. Kneifel. 1971. ian tubules of Calliphora. J. Exp. Biol. 48: 159 - 174.

    Google Scholar 

  21. Lindley, B. D., and T. Hoshiko. 1962. Cation selectiv ties and cation specificity. J. Biol. Chem. 246:3569-ity of biological membranes. Physiologist 5: 176. 3578.

    Google Scholar 

  22. Gillary, H. L. 1966. Stimulation of the salt receptor of 39. Cohen, D. 1962. Specific binding of rubidium in Chlothe blowfly. 3. The alkali halides. J. Gen. Physiol. rella. J. Gen. Physiol. 45: 959 - 977.

    Google Scholar 

  23. Hille, B. 1971. The permeability of the sodium channel Mgr+-activated ATPase activity of reconstituted acto-to organic cations in myelinated nerve. J. Gen. Phys myosin. Biochim. Biophys. Acta 162: 79 - 85.

    Google Scholar 

  24. Chandler, W. K. and H. Meves. 1964. Voltage-clamp 1970. Thallium (I) as a potassium probe in biological experiments on perfused giant axons. J. Physiol. systems. Chem. Commun. 1970: 965 - 966.

    Google Scholar 

  25. Lindeman, B. 1968. Resting potential of isolated beef 1971. Propanediol dehydratase system. Role of mono-cornea. Exp. Eye Res. 7:62-69. valent cations in binding of vitamin B12 co-enzyme or

    Google Scholar 

  26. Eisenman, G., S. G. Ciani, and G. Szabo. 1968. Some its analogs to apoenzyme. Biochemistry 10: 3475 - 3483

    Google Scholar 

  27. McLaughlin, S. G. A., G. Szabo, S. Ciani, and G. stimulated phosphatase of microsomes from gastric Eisenman. 1972. The effects of a cyclic polyether on mucosa. J. Cell. Physiol. 69: 293 - 304.

    Google Scholar 

  28. Myers, V. B., and D. A. Haydon. 1972. Ion transfer bly related to the active, linked transport of Na ion and across lipid membranes in the presence of gramicidin K ion across the nerve membrane. Biochim. Biophys. A. II. The ion selectivity. Biochim. Biophys. Acta Acta 42: 6 - 23.

    Google Scholar 

  29. Gordon, L. G. M. 1974. Ion transport via alamethicin phosphatase as part of the (Na+ + K+)-dependent channels In: Drugs and Transport Processes. B. A. ATPase of cell membranes. Biochim. Biophys. Acta Callingham, ed. Univ. Park Press, London. pp. 251 118:116-123.

    Google Scholar 

  30. Eisenman, G., S. Krasne, and S. Ciani. 1975. The axon plasma membrane: Effects of cations and anions kinetic and equilibrium components of selective ionic on the axonal cholinergic binding macromolecule of permeability mediated by nactin-and valinomycin-type lobster nerves. J. Membr. Biol. 11: 47 - 56.

    Google Scholar 

  31. Mueller, P., and D. O. Rudin. 1967. Development of myosin and other enzymes. J. Biol. Chem. 241:309-K+ and Na+ discrimination in experimental bimolecular 316. lipid membranes by macrocyclic antibiotics. Biochem. 49

    Google Scholar 

  32. Lev, A. A., and E. P. Buzhinsky. 1967. Cation speci erties of the enzyme from calf brain. J. Biol. Chem. ficity of the model bimolecular phospholipid mem 242: 607 - 615.

    Google Scholar 

  33. Mueller, P., and D. O. Rudin. 1969. Translocators in Ann. N.Y. Acad. Sci. 148: 285 - 287.

    Google Scholar 

  34. Szabo, G., G. Eisenman, and S. Ciani. 1969. The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes. J. Membr. Biol. 1: 346 - 382.

    Article  Google Scholar 

  35. Krasne, S., and G. Eisenman. 1976. The influence of molecular variations of ionophore and lipid on the selective ion permeability of membranes: I. Tetranactin and the methylation of nenactin-type carriers. J. Membr. Biol. 30: 1 - 44.

    CAS  Google Scholar 

  36. Kuo, K.-H., and G. Tisenman. 1997. Na+ selective permeation of lipid bilayers mediated by a neutral ionophore. Biophys. J. 17: 212a.

    Google Scholar 

  37. Suelter, C. H. 1974. Monovalent cations in enzyme-catalyzed reactions in: Metal Ions in Biological Systems, Vol. 3. H. Sigel, ed. Dekker, New York. Pp. 201 - 251.

    Google Scholar 

  38. McClure, W. R., H. A. Lardy, and H. P. Kneifel. 1971. Rat liver pyruvate carboxylase. I Preparation, properties and cation specificity. J. Biol. Chem. 246: 3569 - 3578.

    PubMed  CAS  Google Scholar 

  39. Myers, V. B., and D. A. Haydon. 1972. Ion transfer bly related to the active, linked transport of Na ion and across lipid membranes in the presence of gramicidin K ion across the nerve membrane. Biochim. Biophys. A. II. The ion selectivity. Biochim. Biophys. Acta Acta 42: 6 - 23.

    Google Scholar 

  40. Gordon, L. G. M. 1974. Ion transport via alamethicin phosphatase as part of the (Na+ + K+)-dependent channels In: Drugs and Transport Processes. B. A. ATPase of cell membranes. Biochim. Biophys. Acta Callingham, ed. Univ. Park Press, London. pp. 251 118:116-123.

    Google Scholar 

  41. Eisenman, G., S. Krasne, and S. Ciani. 1975. The axon plasma membrane: Effects of cations and anions kinetic and equilibrium components of selective ionic on the axonal cholinergic binding macromolecule of permeability mediated by nactin-and valinomycin-type lobster nerves. J. Membr. Biol. 11: 47 - 56.

    Google Scholar 

  42. Mueller, P., and D. O. Rudin. 1967. Development of myosin and other enzymes. J. Biol. Chem. 241:309-K+ and Na+ discrimination in experimental bimolecular 316. lipid membranes by macrocyclic antibiotics. Biochem. 49

    Google Scholar 

  43. Lev, A. A., and E. P. Buzhinsky. 1967. Cation speci erties of the enzyme from calf brain. J. Biol. Chem. ficity of the model bimolecular phospholipid mem 242: 607 - 615.

    Google Scholar 

  44. Mueller, P., and D. O. Rudin. 1969. Translocators in Ann. N.Y. Acad. Sci. 148: 285 - 287.

    Google Scholar 

  45. Szabo, G., G. Eisenman, and S. Ciani. 1969. The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes. J. Membr. Biol. 1: 346 - 382.

    Article  Google Scholar 

  46. Krasne, S., and G. Eisenman. 1976. The influence of molecular variations of ionophore and lipid on the selective ion permeability of membranes: I. Tetranactin and the methylation of nenactin-type carriers. J. Membr. Biol. 30: 1 - 44.

    CAS  Google Scholar 

  47. Kuo, K.-H., and G. Tisenman. 1997. Na+ selective permeation of lipid bilayers mediated by a neutral ionophore. Biophys. J. 17: 212a.

    Google Scholar 

  48. Suelter, C. H. 1974. Monovalent cations in enzyme-catalyzed reactions in: Metal Ions in Biological Systems, Vol. 3. H. Sigel, ed. Dekker, New York. Pp. 201 - 251.

    Google Scholar 

  49. McClure, W. R., H. A. Lardy, and H. P. Kneifel. 1971. Rat liver pyruvate carboxylase. I Preparation, properties and cation specificity. J. Biol. Chem. 246: 3569 - 3578.

    PubMed  CAS  Google Scholar 

  50. Bezanilla, F., and C. M. Armstrong. 1972. Negative conductance caused by entry of sodium and cesium ions into the K channels of squid axons. J. Gen. Physiol. 60: 588 - 608.

    Article  PubMed  CAS  Google Scholar 

  51. Krasne, S., and G. Eisenman 1973. The molecular basis of ion selectivity. In: Membranes -A Series of Advances, Vol. 3. G. Eisenman, ed. Dekker, New York. pp. 277 - 328.

    Google Scholar 

  52. Gould, E. S. 1959. Mechanism and Structure in Organic Chemistry. Holt, New York.

    Google Scholar 

  53. Eisenman, G., S. M. Ciani, and G. Szabo. 1969. The effects of the macrotetralide actin antibiotics on the equilibrium extraction of alkali metal salts into organic solvents. J. Membr. Biol. 1: 294 - 345.

    Article  Google Scholar 

  54. Eisenman, G 1961. On the elementary atomic origin of equilibrium ionic specificity. In: Symposium on Membrane Transport and Metabolism. A. Kleinzeller and A. Kotyk, Academic Press, New York. pp. 163179.

    Google Scholar 

  55. Hille, B. 1975. Ionic selectivity, saturation, and block in sodium channels• A four barrier model. J. Gen. Physiol. 66: 535 - 560.

    Article  PubMed  CAS  Google Scholar 

  56. Armstrong, C. M. 1975. Potassium pores of nerve and muscle membranes. In: Membranes -A Series of Advances, Vol. 3. J. Eisenman, ed. Dekker, New York. pp. 325 - 358.

    Google Scholar 

  57. Frankenheuser, B. 1962. Delayed currents in myelinated nerve fibres of Xenopus labuis investigated with voltage clamp technique. J. Physiol. (Lond.) 160: 4045.

    Google Scholar 

  58. Ciani, S. G., G. Eisenman, R. Laprade, and G. Szabo. 1973. Theoretical analysis of carrier-mediated electrical properties of bilayer membranes. In: Membranes A Series of Advances, Vol. 2. G. Eisenman, ed. Dekker, New York. pp. 61 - 177.

    Google Scholar 

  59. Hodgkin, A. L., and R. D. Keynes. 1955. The potassium permeability of a giant nerve fibre. J. Physiol. (Lond.) 128: 61 - 88.

    CAS  Google Scholar 

  60. Horowitz, P., P. W. Gage, and R. S. Eisenberg. 1968. The role of the electrochemical gradient in determining potassium fluxes in frog striated muscle. J. Gen. Physiol. 51: 193s - 203s.

    Article  Google Scholar 

  61. Begenisich, T., and M. Cahalan. 1975. Internal K+ alters sodium channel selectivity. Abstract, International Biophysics Congress, Copenhagen. p. 133.

    Google Scholar 

  62. Eisenman, G., J. Sandblom, and E. Neher. 1977. Ionic selectivity, saturation, binding, and block in the gramicidin A channel: A preliminary report. In: Metal- Ligand Interactions in Organic and Biochemistry. 9th Jerusalem Symposium. B. Pullman, ed. Reidel, Holland. pp. 1 - 36.

    Google Scholar 

  63. Hagiwara, S., S. Miyazaki, S Krasne, and S. Ciani. 1977. Anomalous permeabilities of the egg cell membrane of a starfish in K+-T1+ mixtures. J. Gen. Physiol. 70: 269 - 281.

    Article  PubMed  CAS  Google Scholar 

  64. Bezanilla, F., and C. M. Armstrong. 1972. Negative conductance caused by entry of sodium and cesium ions into the K channels of squid axons. J. Gen. Physiol. 60: 588 - 608.

    Article  PubMed  CAS  Google Scholar 

  65. Krasne, S., and G. Eisenman 1973. The molecular basis of ion selectivity. In: Membranes -A Series of Advances, Vol. 3. G. Eisenman, ed. Dekker, New York. pp. 277 - 328.

    Google Scholar 

  66. Simon, W., and W. E. Morf. 1973 Alkali cation specificity of carrier antibiotics and their behavior in bulk membranes. In: Membranes -A Series of Advances Vol. 2. G. Eisenman, ed. Dekker, New York. pp. 329 - 376.

    Google Scholar 

  67. Eisenman, G. 1969. Theory of membrane electrode potentials: An examination of the parameters determining the selectivity of solid and liquid ion exchangers and of neutral ion-sequestering molecules. In: Ion-Selective Electrodes. R. A. Durst, ed. Special Publication 314, National Bureau of Standards, Washington, D.C. pp. 1 - 56.

    Google Scholar 

  68. Gould, E. S. 1959. Mechanism and Structure in Organic Chemistry. Holt, New York.

    Google Scholar 

  69. Ciani, S., R. Laprade, G. Eisenman, and G. Szabo. 1973. Theory for carrier-mediated zero-current conductance of bilayers extended to allow for nonequilibrium of interfacial reactions, spatially dependent mobilities and barrier shape. J. Membr. Biol. 11: 255 - 292.

    Article  CAS  Google Scholar 

  70. Ciani, S., F. Gambale, A. Gliozzi, and R. Rolandi. 1975. Effects of unstirred layers on the steady-state zero-current conductance of bilayer membranes mediated by neutral carriers of ions. J. Membr. Biol. 24: 1 - 34.

    Article  PubMed  CAS  Google Scholar 

  71. Läuger, P., and B. Neumcke. 1973. Theoretical analysis of ion conductance in lipid bilayer membranes. In: Membranes -A Series of Advances, Vol. 2. G. Eisen-man, ed. Dekker, New York. pp. 1 - 60.

    Google Scholar 

  72. Szabo, G., and G. Eisenman. 1973. Enhanced cation permeation in glyceryl oleate bilayers. Biophys. Soc. Abstr. 13: 175a.

    Google Scholar 

  73. Ciani, S. 1976. The influence of molecular variations of ionophore and lipid on the selective ion permeability of membranes: II. A theoretical model. J. Membr. Biol. 30: 45 - 64.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Krasne, S. (1980). Ion Selectivity in Membrane Permeation. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D. (eds) Membrane Physiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1718-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1718-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1720-4

  • Online ISBN: 978-1-4757-1718-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics