Lipid Bilayer Membranes: Their Permeability Properties as Related to Those of Cell Membranes

  • Alan Finkelstein

Abstract

Of the numerous functions that plasma membranes perform, the maintenance of the internal milieu of the cell through selective permeability and transport characteristics is perhaps the most essential, and certainly the most studied. One approach, with a long and distinguished tradition, for investigating this aspect of cell membranes is the building and analysis of model systems that emulate some of the properties of natural membranes. Of the models that have been investigated over the years, the lipid bilayer membrane (which is currently in vogue) has by far proved to be the most suitable and interesting—suitable, because a lipid bilayer is the major structural feature of all cell membranes; and interesting, because (a) many of the permeability characteristics of cell membranes can be reproduced with this model, and (b) reconstitution in artificial bilayers of natural transporting systems is possible. In this chapter, I review some highlights of the research involving this model system, and indicate possible future avenues of investigation.

Keywords

Lipid Bilayer Bilayer Membrane Lipid Bilayer Membrane Membrane Conductance Alkali Cation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jung, C. Y. 1971. Permeability of bimolecular membranes made from lipid extracts of human red cell ghosts to sugars. J. Membr. Biol. 5:200–214:Google Scholar
  2. 2.
    Finkelstein, A. 1974. Bilayers: formation, measurements, and incorporation of components. In: Methods in Enzymology, Vol. 22: Biomembranes, Pt. B. S. Fleischer and L. Packer, eds. Academic Press, New York. pp. 489–501.Google Scholar
  3. 3.
    Montal, M. 1974. Formation of bimolecular membranes from lipid monolayers. In: Methods in Enzymology, Vol. 22: Biomembranes, Pt. B. S. Fleischer and L. Packer, eds. Academic Press, New York. pp. 545–554.Google Scholar
  4. 4.
    Holz, R., and A. Finkelstein. 1970. The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J. Gen. Physiol. 56: 125–145.PubMedCrossRefGoogle Scholar
  5. 5.
    Finkelstein, A., and A. Cass. 1968. Permeability and electrical properties of thin lipid membranes. J. Gen. Physiol. 52: 145s - 172s.CrossRefGoogle Scholar
  6. 6.
    Finkelstein, A. 1976. The water and nonelectrolyte permeability of lipid bilayer membranes. J. Gen. Physiol. 68: 127–135.PubMedCrossRefGoogle Scholar
  7. 7.
    Price, H. D., and T. E. Thompson. 1969. Properties of liquid bilayer membranes separating two aqueous phases: Temperature dependence of water permeability. J. Mol. Biol. 41: 443–457.PubMedCrossRefGoogle Scholar
  8. 8.
    Gutknecht, J. 1968. Permeability of Valonia to water and solutes: Apparent absence of aqueous membrane pores. Biochim. Biophys. Acta 163: 20–29.PubMedCrossRefGoogle Scholar
  9. 9.
    Finkelstein, A. 1976. The nature of the water permeability increase induced by antidiuretic hormone (ADH) in toad urinary bladder and related tissues. J. Gen. Physiol. 68: 137–143.PubMedCrossRefGoogle Scholar
  10. 10.
    Mueller, P., and D. O. Rudin. 1967. Development of K+-Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics. Biochem. Biophys. Res. Commun. 26: 398–404.PubMedCrossRefGoogle Scholar
  11. 11.
    Szabo, G., G. Eisenman, and S. Ciani. 1969. The effect of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes. J. Membr. Biol. 1: 346–382.CrossRefGoogle Scholar
  12. 12.
    McLaughlin, S. G. A., G. Szabo, G. Eisenman, and S. M. Ciani. 1970. Surface charge and the conductance of phospholipid membranes. Proc. Natl. Acad. Sci. U.S.A. 67: 1268–1275.PubMedCrossRefGoogle Scholar
  13. 13.
    Dobler, M., J. D. Dunitz, and J. Krajewski. 1969. Structure of the K+ complex with enniatin B, a macro-cyclic antibiotic with K+ transport properties. J. Mol. Biol. 42: 603–606.PubMedCrossRefGoogle Scholar
  14. 14.
    Kilbourn, B. T., J. D. Dunitz, L. A. Pioda, and W. Simon. 1967. Structure of the K+ complex with nonactin, a macrotetrolide antibiotic possessing highly specific K+ transport properties. J. Mol. Biol. 30: 559–563.PubMedCrossRefGoogle Scholar
  15. 15.
    Pinkerton, M., L. K. Steinrauf, and P. Dawkins. 1969. The molecular structure and some transport properties of valinomycin. Biochem. Biophys. Res. Commun. 35: 512–518.PubMedCrossRefGoogle Scholar
  16. 16.
    Unger, P. 1972. Carrier-mediated ion transport. Science 178: 24–30.CrossRefGoogle Scholar
  17. 17.
    Lampen, J. O. 1966. Interference of polyene antifungal antibiotics (especially nystatin and fillipin) with specific membrane functions. In: Biochemical Studies of Antimicrobial Drugs. B. A. Newton and P. E. Reynolds, eds. The Society of General Microbiology, Cambridge, Mass. pp. 111–130.Google Scholar
  18. 18.
    Cass, A., A. Finkelstein, and V. Krespi. 1970. The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J. Gen. Physiol. 56: 100–124.PubMedCrossRefGoogle Scholar
  19. 19.
    Andreoli, T. E., and M. Monahan. 1968. The interaction of polyene antibiotics with thin lipid membranes. J. Gen. Physiol. 52: 300–325.PubMedCrossRefGoogle Scholar
  20. 20.
    Mechlinski, W., C. P. Schaffner, P. Ganis, and G. Avitabile. 1970. Structure and absolute configuration of the polyene macrolide antibiotic amphotericin B. Tetrahedron Lett, No. 44, 3873–3876.CrossRefGoogle Scholar
  21. 21.
    Finkelstein, A., and R. Holz. 1973. Aqueous pores created in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. In: Membranes, Vol. 2: Lipid Bilayers and Antibiotics. G. Eisenman, ed. Dekker, New York. pp. 377–408.Google Scholar
  22. 22.
    Marty, A. and A. Finkelstein. 1975. Pores formed in lipid bilayer membranes by nystatin. Differences in its one-sided and two-sided action. J. Gen. Physiol. 65: 515–526.PubMedCrossRefGoogle Scholar
  23. 23.
    Hladky, S. B., and D. A. Haydon. 1972. Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies on the unit conductance channel. Biochim. Biophys. Acta 274: 294–312.PubMedCrossRefGoogle Scholar
  24. 24.
    Ehrenstein, G., H. Lecar, and R. Nossal. 1970. The nature of the negative resistance in bimolecular lipid membranes containing excitability-inducing material. J. Gen. Physiol. 55: 119–133. 34.Google Scholar
  25. 25.
    Boheim, G. 1974. Statistical analysis of alamethicin channels in black lipid membranes. J. Membr. Biol. 19: 277–303.PubMedCrossRefGoogle Scholar
  26. 26.
    Goodall, M. 1970. Structural effects in the action of antibiotics on the ion permeability of lipid bilayers. Ill. Gramicidins `A’ and `S’, and lipid specificity. Biochim. Biophys. Acta 219: 471–478.PubMedCrossRefGoogle Scholar
  27. 27.
    Urry, D. W., M. C. Goodall, J. D. Glickson, and D. F. Mayers. 1971. The gramicidin A transmembrane channel:Characteristics of head-to-head dimerized a-(L.D) helices. Proc. Natl. Acad. Sci. U.S.A. 68: 1907–1911.PubMedCrossRefGoogle Scholar
  28. 28.
    Veatch, W. R., E. T. Fossel, and E. R. Blout. 1974. The conformation of gramicidin A. Biochemistry 13: 5249–5256.PubMedCrossRefGoogle Scholar
  29. 29.
    Finkelstein, A., and A. Mauro. 1977. Physical principles and formalisms of electrical excitability. Hand- book of Physiology. Section 1: The Nervous System, Vol. 1. Cellular Biology of Neurons. E. R. Kandel, ed. American Physiological Society, Bethesda, Maryland. pp. 161–213.Google Scholar
  30. 30.
    Muller, R. U., and A. Finkelstein. 1972. Voltage-dependent conductance induced in thin lipid membranes by monazomycin. J. Gen. Physiol. 60: 263–284.PubMedCrossRefGoogle Scholar
  31. 31.
    Mueller, P., and D. O. Rudin. 1968. Resting and action potentials in experimental bimolecular lipid membranes. J. Theor. Biol. 18: 222–258.PubMedCrossRefGoogle Scholar
  32. 32.
    Mueller, P., and D. O. Rudin. 1%8. Action potentials induced in bimolecular lipid membranes. Nature 42. 217: 713–719.Google Scholar
  33. 33.
    Latorre, R., O. Alvarez, G. Ehrenstein, M. Espinoza, and J. Reyes. 1975. The nature of the voltage-dependent conductance of the hemocyanin channel. J. Membr. Biol. 25: 163–182.PubMedCrossRefGoogle Scholar
  34. 34.
    Akasaki, K., K. Karasawa, M. Watanabe, H. Yonehara, and H. Umezawa. 1963. Monazomycin, a new antibiotic produced by a Streptomyces. J. Antibiot. (Tokyo) Ser. A 16:127–131.Google Scholar
  35. 35.
    Heyer, E. J., R. U. Muller, and A. Finkelstein. 1976. Inactivation of monazomycin-induced voltage-dependent conductance in thin lipid membranes. II. Inactivation produced by monazomycin transport through the membrane. J. Gen. Physiol. 67: 731–748.PubMedCrossRefGoogle Scholar
  36. 36.
    Baumann, G., and P. Mueller. 1974. A molecular model of membrane excitability. J. Supramol. Struct. 2: 538–557.PubMedCrossRefGoogle Scholar
  37. 37.
    Racker, E., A. F. Knowles, and E. Eyton. 1975. Resolution and reconstitution of ion-transport systems. Ann. N.Y. Acad. Sci. 264: 17–33.PubMedCrossRefGoogle Scholar
  38. 38.
    Kagawa, Y. 1972. Reconstitution of oxidative phosphorylation. Biochim. Biophys. Acta 265:297–338. Goldin, S. M., and K. J. Sweadner. 1975. Reconstitution of active transport by kidney and brain (Na+ + K+)-ATPase. Ann. N.Y. Acad. Sci. 264: 387–397.Google Scholar
  39. 39.
    Goldin, S.M. 1975. Reconstitution of oxidative phosphorylation. Biochim. Biophys. Acta 265:297–338. Goldin, S. M., and K. J. Sweadner. 1975. Reconstitution of active transport by kidney and brain (Na+ + K+)-ATPase. Ann. N.Y. Acad. Sci. 264: 387–397.CrossRefGoogle Scholar
  40. 40.
    Knowles, A. F., and E. Racker. 1975. Properties of a reconstituted calcium pump. J. Biol. Chem. 250: 35383544.Google Scholar
  41. 41.
    Raker, E., and W. Stoeckenius. 1974. Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation. J. Biol. Chem. 249: 662–663.Google Scholar
  42. 42.
    Kasahara, M., and P. C. Hinkle. 1976. Reconstitution of D-glucose transport catalyzed by a protein fraction from human erythrocytes in sonicated liposomes. Proc. Natl. Acad. Sci. U.S.A. 73: 396–400.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Alan Finkelstein
    • 1
  1. 1.Departments of Physiology, Neuroscience, and BiophysicsAlbert Einstein College of MedicineBronxUSA

Personalised recommendations