Principles of Electrical Methods for Studying Membrane Movements of Ions

  • Paul Horowicz
  • Martin F. Schneider
  • Ted Begenisich


The aim of this chapter is to collect and introduce the concepts and principles underlying the methods commonly employed in studies in which the electrical and ionic properties of biological membranes are being investigated. The survey presented is not comprehensive. Nevertheless, it is intended to provide a sufficient background to enable the nonexpert to follow the original literature and advanced reviews in this field with a degree of familiarity.


Voltage Clamp Membrane Current Membrane Conductance Current Noise Noise Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hodgkin, A. L., and P. Horowicz. 1959. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J. Physiol. 148: 127–160.PubMedGoogle Scholar
  2. 2.
    Strickholm, A., and B. G. Wallin 1967. Relative ion permeabilities in the crayfish giant axon determined from rapid external ion changes. J. Gen. Physiol. 50: 1929–1953.CrossRefPubMedGoogle Scholar
  3. 3.
    Brown, A. M., J. L. Walker, Jr., and R. B. Sutton. 1970. Increased chloride conductance as the proximate cause of hydrogen ion concentration effects in Aplysia neurons. J. Gen. Physiol. 56: 559–582.CrossRefPubMedGoogle Scholar
  4. 4.
    Goldman, D. E. 1943. Potential, impedance and rectification in membranes. J. Gen. Physiol. 27: 37–60.CrossRefPubMedGoogle Scholar
  5. 5.
    Hodgkin, A. L., and B. Katz. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. 108: 37–77.PubMedGoogle Scholar
  6. 6.
    Ussing, H. H. 1949. The distinction by means of tracers between active transport and diffusion. Acta Physiol. Scand. 19: 43–56.CrossRefGoogle Scholar
  7. 7.
    Hodgkin, A. L., and A. F. Huxley. 1952. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116:449–472.Google Scholar
  8. 8.
    Patlak, C. S. 1960. Derivation of an equation for the diffusion potential. Nature 188: 944–945.CrossRefPubMedGoogle Scholar
  9. 9.
    Curran, P. E., and S. G. Schultz. 1968. Transport across membranes: General principles. In: Handbook of Physiology, Section 6, Alimentary Canal, Vol. IH: Intestinal Absorption. C. F. Code, ed. American Physiological Society, Washington, D.C. pp. 1217–1243.Google Scholar
  10. 10.
    Schultz, S. G., and P. F. Curran. 1%8. Intestinal absorption of sodium chloride and water. In: Handbook of Physiology, Section 6, Alimentary Canal, Vol. HI: Intestinal Absorption. C. F. Code, ed. American Physiological Society, Washington, D.C. pp. 1245–1275.Google Scholar
  11. 11.
    Sjodin, R. A. 1965. The potassium flux ratio in skeletal muscle as a test for independent ion movement. J. Gen. Physiol. 48: 777–795.CrossRefPubMedGoogle Scholar
  12. 12.
    Horowicz, P., P. W. Gage, and R. S. Eisenberg. 1968. The role of the electrochemical gradient in determining potassium fluxes in frog striated muscle. J. Gen. Physiol. 51: 193s - 203s.PubMedGoogle Scholar
  13. 13.
    Hodgkin, A. L. 1951. The ionic basis of electrical activity in nerve and muscle. Proc. Cambr. Phil. Soc. Biol. Rev. 26: 339–409.CrossRefGoogle Scholar
  14. 14.
    Armstrong, C. M. 1975. Potassium pores of nerve and muscle membranes. In: Membranes: A Series of Advances, Vol. 3: Lipid Bilayers and Biological Mem-braves: Dynamic Properties. G. Eisenman, ed. Dekker, New York. pp. 325–358.Google Scholar
  15. 15.
    Hille, B. 1975. Ionic selectivity of Na and K channels 34. of nerve membranes. In: Membranes: A Series of Advances, Vol. 3: Lipid Bilayers and Biological Membranes: Dynamic Properties. G. Eisenman, ed. Dek- 35. ker, New York. pp. 255–323.Google Scholar
  16. 16.
    Hodgkin, A. L., and A. F. Huxley. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500–544.Google Scholar
  17. 17.
    Frankenhaeuser, B., and A. L. Hodgkin, 1956. The after-effects of impulses in the giant nerve fibers of Loligo. J. Physiol. 131: 341–376.Google Scholar
  18. 18.
    Noble, D., and R. W. Tsien. 1969. Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J. Physiol. 200: 205–231.PubMedGoogle Scholar
  19. 19.
    Armstrong, C. M., and F. Bezanilla. 1973. Currents related to the movement of the gating particles of the sodium channels. Nature 242: 459–461.CrossRefPubMedGoogle Scholar
  20. 20.
    Schneider, M. F., and W. K. Chandler. 1973. Voltage dependent charge movement in skeletal muscle: A possible step in excitation-contraction coupling. Nature 242:244–246.Google Scholar
  21. 21.
    Meves, H. 1976. The effect of zinc on the late displacement current in squid giant axons. J. Physiol. 254: 787–42. 801.Google Scholar
  22. 22.
    Adrian, R. H., and W. Almers. 1976. The voltage dependence of membrane capacity. J. Physiol. 254: 317–338.PubMedGoogle Scholar
  23. 23.
    Schneider, M. F., and W. K. Chandler. 1976. Effects of membrane potential on the capacitance of skeletal muscle fibers. J. Gen. Physiol. 67:125–163.Google Scholar
  24. 24.
    Hodgkin, A. L., A. F. Huxley, and B. Katz. 1952. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116:424448.Google Scholar
  25. 25.
    Tasaki, I., and K. Frank. 1955. Measurement of the action potential of myelinated nerve fiber. Am. J. Physiol. 182:572–578.Google Scholar
  26. 26.
    Stämpfli, R. 1954. A new method for measuring membrane potentials with external electrodes. Experientia 10: 508–509.CrossRefPubMedGoogle Scholar
  27. 27.
    Frankenhaeuser, B. 1957. A method for recording resting and action potentials in the isolated myelinated nerve fiber of the frog. J. Physiol. 135: 550–559.PubMedGoogle Scholar
  28. 28.
    Morad, M., and W. Trautwein. 1968. The effect of the duration of the action potential on contraction in the mammalian heart muscle. Pfluegers Arch. 299: 66–82.CrossRefGoogle Scholar
  29. New, W., and W. Trautwein. 1972. Inward membrane currents in mammalian myocardium. Pfluegers Arch. 334:1–23.Google Scholar
  30. 30.
    Julian, F. J., J. W. Moore, and D. E. Goldman. 1962. Membrane potentials of the lobster giant axon obtained by use of the sucrose gap technique. J. Gen. Physiol. 45:1195–1216. 51.Google Scholar
  31. 32.
    Adrian, R. H., and W. H. Freygang. 1%2. The potassium and chloride conductance of frog muscle mem- 52. brane. J. Physiol. 163: 61–103.Google Scholar
  32. 33.
    Adrian, R. H., W. K. Chandler, and A. L. Hodgkin. 1970. Voltage clamp experiments in striated muscle 53. fibres. J. Physiol. 208: 607–644.PubMedGoogle Scholar
  33. 34.
    Verveen, A. A., and L. F. DeFelice. 1974. Membrane noise. In: Progress in Biophysics and Molecular Biology, Vol. 28. A. J. V. Butler and D. Noble, eds. Pergamon, Oxford. pp. 189–265.Google Scholar
  34. 34.
    Conti, F., and E. Wanke. 1975. Channel noise in nerve membranes and lipid bilayers. Q. Rev. Biophys. 8: 451506.Google Scholar
  35. 35.
    Stevens, C. F. 1975. Principles and applications of fluctuation analysis: A non-mathematical introduction. Fed. Proc. 34:1364–1369.Google Scholar
  36. 36.
    Neher, E., and B. Sakmann. 1976. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260: 799–802.CrossRefPubMedGoogle Scholar
  37. 37.
    Stevens, C. F. 1972. Inferences about membrane properties from electrical noise measurements. Biophys. J. 12:1028–1047.Google Scholar
  38. 38.
    Hooge, F. N. 1970. 1/f noise in the conductance of ions in aqueous solutions. Phys. Lett. 33A:169–170. DeFelice, L. J., and D. R. Firth. 1971. Spontaneous voltage fluctuations in glass microelectrodes. IEEE Trans. Biomed. Eng. 18: 339–351.Google Scholar
  39. 39.
    DeFelice, L. J., and J. P. L. M. Michalides. 1972. Electrical noise from synthetic membranes. J. Membr. Biol. 9: 261–290.CrossRefGoogle Scholar
  40. 40.
    DeFelice, L. J., and J. P. L. M. Michalides. 1972. Electrical noise from synthetic membranes. J. Membr. Biol. 9: 261–290.CrossRefGoogle Scholar
  41. 41.
    Derksen, H. E. 1965. Axon membrane voltage fluctuations. Acta Physiol. Pharmacol. Neerl. 13: 373–466.PubMedGoogle Scholar
  42. 42.
    Verveen, A. A., and H. E. Derksen. 1965. Fluctuations in membrane potential of axons and the problem of coding. Kybernetik. 2: 152–160.Google Scholar
  43. 43.
    Hill, T. L., and Y. Chen. 1972. On the theory of ion transport across the nerve membrane. IV. Noise from the open-close kinetics of K channels. Biophys. J. 12: 948–959.CrossRefPubMedGoogle Scholar
  44. 44.
    Fishman, H. M., L. E. Moore, and D. M. Poussart. 1975. Potassium ion conduction noise in squid axon membrane. J. Membr. Biol. 24: 305–328.CrossRefPubMedGoogle Scholar
  45. 45.
    van den Berg, R. J., J. deGoede, and A. A. Verveen. 1975. Conductance fluctuations in Ranvier nodes. Pfluegers Arch. 360:17–23.Google Scholar
  46. 46.
    Nonner, W., F. Conti, B. Hille, B. Neumke, and R. Stämpfli. 1976. Current noise and the conductance of single Na channels. Pfluegers Arch. 362: R27 (Suppl.).Google Scholar
  47. 47.
    Siebenga, E., A. W. A. Meyer, and A. A. Verveen. 1973. Membrane shot-noise in electrically depolarized nodes of Ranvier. Pfluegers Arch. 341: 87–96.CrossRefGoogle Scholar
  48. 48.
    Sjölin, V., and W. Grampp. 1975. Membrane noise in slowly adapting stretch receptor neuron of lobster. Nature 257: 696–697.CrossRefPubMedGoogle Scholar
  49. 49.
    Anderson, C. R., and C. F. Stevens. 1973. Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J. Physiol. 235: 655–691.PubMedGoogle Scholar
  50. 50.
    Anderson, C. R., S. G. Cull-Candy, and R. Miledi. 1976. Glutamate and quisqualate noise in voltage-clamped locust muscle fibres. Nature 261:151–153.Google Scholar
  51. 51.
    Armstrong, C. M. 1975. Ionic pores, gates, and gating currents. Q. Rev. Biophys. 7:179–210.Google Scholar
  52. 52.
    Begenisich, T. B., and C. F. Stevens. 1975. How many conductance states do potassium channels have? Biophys. J. 15: 843–846.CrossRefPubMedGoogle Scholar
  53. 53.
    Colquhoun, D., V. E. Dionne, J. H. Steinbach, and C. F. Stevens. 1975. Conductance of channels opened by acetylcholine-like drugs in muscle end-plate. Nature 253:204–206.Google Scholar
  54. 54.
    Neher, E., and H. P. Zingsheim. 1974. The properties of ionic channels measured by noise analysis in thin lipid membranes. Pfluegers Arch. Ges. Physiol. 351: 61–67.CrossRefGoogle Scholar
  55. 55.
    Kolb, H. A., P. Läuger, and E. Bamberg. 1975. Correlation analysis of electrical noise in lipid bilayer membranes: Kinetics of gramicidin A channels. J. Membr. Biol. 20: 133–154.CrossRefPubMedGoogle Scholar
  56. 56.
    Zingsheim. H. P., and E. Neher. 1974. The equivalence of fluctuation analysis and chemical relaxation measurements: A study of ion pore formation in thin lipid membranes. Biophys. Chem. 2: 197–207.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Paul Horowicz
    • 1
  • Martin F. Schneider
    • 1
  • Ted Begenisich
    • 1
  1. 1.Department of PhysiologyUniversity of Rochester School of Medicine and DentistryRochesterUSA

Personalised recommendations