Skip to main content

Principles of Electrical Methods for Studying Membrane Movements of Ions

  • Chapter
Membrane Physiology

Abstract

The aim of this chapter is to collect and introduce the concepts and principles underlying the methods commonly employed in studies in which the electrical and ionic properties of biological membranes are being investigated. The survey presented is not comprehensive. Nevertheless, it is intended to provide a sufficient background to enable the nonexpert to follow the original literature and advanced reviews in this field with a degree of familiarity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hodgkin, A. L., and P. Horowicz. 1959. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J. Physiol. 148: 127–160.

    CAS  PubMed  Google Scholar 

  2. Strickholm, A., and B. G. Wallin 1967. Relative ion permeabilities in the crayfish giant axon determined from rapid external ion changes. J. Gen. Physiol. 50: 1929–1953.

    Article  CAS  PubMed  Google Scholar 

  3. Brown, A. M., J. L. Walker, Jr., and R. B. Sutton. 1970. Increased chloride conductance as the proximate cause of hydrogen ion concentration effects in Aplysia neurons. J. Gen. Physiol. 56: 559–582.

    Article  CAS  PubMed  Google Scholar 

  4. Goldman, D. E. 1943. Potential, impedance and rectification in membranes. J. Gen. Physiol. 27: 37–60.

    Article  CAS  PubMed  Google Scholar 

  5. Hodgkin, A. L., and B. Katz. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. 108: 37–77.

    CAS  PubMed  Google Scholar 

  6. Ussing, H. H. 1949. The distinction by means of tracers between active transport and diffusion. Acta Physiol. Scand. 19: 43–56.

    Article  CAS  Google Scholar 

  7. Hodgkin, A. L., and A. F. Huxley. 1952. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116:449–472.

    Google Scholar 

  8. Patlak, C. S. 1960. Derivation of an equation for the diffusion potential. Nature 188: 944–945.

    Article  CAS  PubMed  Google Scholar 

  9. Curran, P. E., and S. G. Schultz. 1968. Transport across membranes: General principles. In: Handbook of Physiology, Section 6, Alimentary Canal, Vol. IH: Intestinal Absorption. C. F. Code, ed. American Physiological Society, Washington, D.C. pp. 1217–1243.

    Google Scholar 

  10. Schultz, S. G., and P. F. Curran. 1%8. Intestinal absorption of sodium chloride and water. In: Handbook of Physiology, Section 6, Alimentary Canal, Vol. HI: Intestinal Absorption. C. F. Code, ed. American Physiological Society, Washington, D.C. pp. 1245–1275.

    Google Scholar 

  11. Sjodin, R. A. 1965. The potassium flux ratio in skeletal muscle as a test for independent ion movement. J. Gen. Physiol. 48: 777–795.

    Article  CAS  PubMed  Google Scholar 

  12. Horowicz, P., P. W. Gage, and R. S. Eisenberg. 1968. The role of the electrochemical gradient in determining potassium fluxes in frog striated muscle. J. Gen. Physiol. 51: 193s - 203s.

    CAS  PubMed  Google Scholar 

  13. Hodgkin, A. L. 1951. The ionic basis of electrical activity in nerve and muscle. Proc. Cambr. Phil. Soc. Biol. Rev. 26: 339–409.

    Article  CAS  Google Scholar 

  14. Armstrong, C. M. 1975. Potassium pores of nerve and muscle membranes. In: Membranes: A Series of Advances, Vol. 3: Lipid Bilayers and Biological Mem-braves: Dynamic Properties. G. Eisenman, ed. Dekker, New York. pp. 325–358.

    Google Scholar 

  15. Hille, B. 1975. Ionic selectivity of Na and K channels 34. of nerve membranes. In: Membranes: A Series of Advances, Vol. 3: Lipid Bilayers and Biological Membranes: Dynamic Properties. G. Eisenman, ed. Dek- 35. ker, New York. pp. 255–323.

    Google Scholar 

  16. Hodgkin, A. L., and A. F. Huxley. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500–544.

    Google Scholar 

  17. Frankenhaeuser, B., and A. L. Hodgkin, 1956. The after-effects of impulses in the giant nerve fibers of Loligo. J. Physiol. 131: 341–376.

    CAS  Google Scholar 

  18. Noble, D., and R. W. Tsien. 1969. Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J. Physiol. 200: 205–231.

    CAS  PubMed  Google Scholar 

  19. Armstrong, C. M., and F. Bezanilla. 1973. Currents related to the movement of the gating particles of the sodium channels. Nature 242: 459–461.

    Article  CAS  PubMed  Google Scholar 

  20. Schneider, M. F., and W. K. Chandler. 1973. Voltage dependent charge movement in skeletal muscle: A possible step in excitation-contraction coupling. Nature 242:244–246.

    Google Scholar 

  21. Meves, H. 1976. The effect of zinc on the late displacement current in squid giant axons. J. Physiol. 254: 787–42. 801.

    Google Scholar 

  22. Adrian, R. H., and W. Almers. 1976. The voltage dependence of membrane capacity. J. Physiol. 254: 317–338.

    CAS  PubMed  Google Scholar 

  23. Schneider, M. F., and W. K. Chandler. 1976. Effects of membrane potential on the capacitance of skeletal muscle fibers. J. Gen. Physiol. 67:125–163.

    Google Scholar 

  24. Hodgkin, A. L., A. F. Huxley, and B. Katz. 1952. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116:424448.

    Google Scholar 

  25. Tasaki, I., and K. Frank. 1955. Measurement of the action potential of myelinated nerve fiber. Am. J. Physiol. 182:572–578.

    Google Scholar 

  26. Stämpfli, R. 1954. A new method for measuring membrane potentials with external electrodes. Experientia 10: 508–509.

    Article  PubMed  Google Scholar 

  27. Frankenhaeuser, B. 1957. A method for recording resting and action potentials in the isolated myelinated nerve fiber of the frog. J. Physiol. 135: 550–559.

    CAS  PubMed  Google Scholar 

  28. Morad, M., and W. Trautwein. 1968. The effect of the duration of the action potential on contraction in the mammalian heart muscle. Pfluegers Arch. 299: 66–82.

    Article  CAS  Google Scholar 

  29. New, W., and W. Trautwein. 1972. Inward membrane currents in mammalian myocardium. Pfluegers Arch. 334:1–23.

    Google Scholar 

  30. Julian, F. J., J. W. Moore, and D. E. Goldman. 1962. Membrane potentials of the lobster giant axon obtained by use of the sucrose gap technique. J. Gen. Physiol. 45:1195–1216. 51.

    Google Scholar 

  31. Adrian, R. H., and W. H. Freygang. 1%2. The potassium and chloride conductance of frog muscle mem- 52. brane. J. Physiol. 163: 61–103.

    Google Scholar 

  32. Adrian, R. H., W. K. Chandler, and A. L. Hodgkin. 1970. Voltage clamp experiments in striated muscle 53. fibres. J. Physiol. 208: 607–644.

    CAS  PubMed  Google Scholar 

  33. Verveen, A. A., and L. F. DeFelice. 1974. Membrane noise. In: Progress in Biophysics and Molecular Biology, Vol. 28. A. J. V. Butler and D. Noble, eds. Pergamon, Oxford. pp. 189–265.

    Google Scholar 

  34. Conti, F., and E. Wanke. 1975. Channel noise in nerve membranes and lipid bilayers. Q. Rev. Biophys. 8: 451506.

    Google Scholar 

  35. Stevens, C. F. 1975. Principles and applications of fluctuation analysis: A non-mathematical introduction. Fed. Proc. 34:1364–1369.

    Google Scholar 

  36. Neher, E., and B. Sakmann. 1976. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260: 799–802.

    Article  CAS  PubMed  Google Scholar 

  37. Stevens, C. F. 1972. Inferences about membrane properties from electrical noise measurements. Biophys. J. 12:1028–1047.

    Google Scholar 

  38. Hooge, F. N. 1970. 1/f noise in the conductance of ions in aqueous solutions. Phys. Lett. 33A:169–170. DeFelice, L. J., and D. R. Firth. 1971. Spontaneous voltage fluctuations in glass microelectrodes. IEEE Trans. Biomed. Eng. 18: 339–351.

    Google Scholar 

  39. DeFelice, L. J., and J. P. L. M. Michalides. 1972. Electrical noise from synthetic membranes. J. Membr. Biol. 9: 261–290.

    Article  Google Scholar 

  40. DeFelice, L. J., and J. P. L. M. Michalides. 1972. Electrical noise from synthetic membranes. J. Membr. Biol. 9: 261–290.

    Article  Google Scholar 

  41. Derksen, H. E. 1965. Axon membrane voltage fluctuations. Acta Physiol. Pharmacol. Neerl. 13: 373–466.

    PubMed  Google Scholar 

  42. Verveen, A. A., and H. E. Derksen. 1965. Fluctuations in membrane potential of axons and the problem of coding. Kybernetik. 2: 152–160.

    Google Scholar 

  43. Hill, T. L., and Y. Chen. 1972. On the theory of ion transport across the nerve membrane. IV. Noise from the open-close kinetics of K channels. Biophys. J. 12: 948–959.

    Article  CAS  PubMed  Google Scholar 

  44. Fishman, H. M., L. E. Moore, and D. M. Poussart. 1975. Potassium ion conduction noise in squid axon membrane. J. Membr. Biol. 24: 305–328.

    Article  CAS  PubMed  Google Scholar 

  45. van den Berg, R. J., J. deGoede, and A. A. Verveen. 1975. Conductance fluctuations in Ranvier nodes. Pfluegers Arch. 360:17–23.

    Google Scholar 

  46. Nonner, W., F. Conti, B. Hille, B. Neumke, and R. Stämpfli. 1976. Current noise and the conductance of single Na channels. Pfluegers Arch. 362: R27 (Suppl.).

    Google Scholar 

  47. Siebenga, E., A. W. A. Meyer, and A. A. Verveen. 1973. Membrane shot-noise in electrically depolarized nodes of Ranvier. Pfluegers Arch. 341: 87–96.

    Article  CAS  Google Scholar 

  48. Sjölin, V., and W. Grampp. 1975. Membrane noise in slowly adapting stretch receptor neuron of lobster. Nature 257: 696–697.

    Article  PubMed  Google Scholar 

  49. Anderson, C. R., and C. F. Stevens. 1973. Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J. Physiol. 235: 655–691.

    CAS  PubMed  Google Scholar 

  50. Anderson, C. R., S. G. Cull-Candy, and R. Miledi. 1976. Glutamate and quisqualate noise in voltage-clamped locust muscle fibres. Nature 261:151–153.

    Google Scholar 

  51. Armstrong, C. M. 1975. Ionic pores, gates, and gating currents. Q. Rev. Biophys. 7:179–210.

    Google Scholar 

  52. Begenisich, T. B., and C. F. Stevens. 1975. How many conductance states do potassium channels have? Biophys. J. 15: 843–846.

    Article  CAS  PubMed  Google Scholar 

  53. Colquhoun, D., V. E. Dionne, J. H. Steinbach, and C. F. Stevens. 1975. Conductance of channels opened by acetylcholine-like drugs in muscle end-plate. Nature 253:204–206.

    Google Scholar 

  54. Neher, E., and H. P. Zingsheim. 1974. The properties of ionic channels measured by noise analysis in thin lipid membranes. Pfluegers Arch. Ges. Physiol. 351: 61–67.

    Article  CAS  Google Scholar 

  55. Kolb, H. A., P. Läuger, and E. Bamberg. 1975. Correlation analysis of electrical noise in lipid bilayer membranes: Kinetics of gramicidin A channels. J. Membr. Biol. 20: 133–154.

    Article  CAS  PubMed  Google Scholar 

  56. Zingsheim. H. P., and E. Neher. 1974. The equivalence of fluctuation analysis and chemical relaxation measurements: A study of ion pore formation in thin lipid membranes. Biophys. Chem. 2: 197–207.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Horowicz, P., Schneider, M.F., Begenisich, T. (1980). Principles of Electrical Methods for Studying Membrane Movements of Ions. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D. (eds) Membrane Physiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1718-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1718-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1720-4

  • Online ISBN: 978-1-4757-1718-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics