Advances in Energy Deposition Theory

  • Herwig G. Paretzke
Part of the Ettore Majorana International Science Series book series (EMISS, volume 2)


The subject “energy deposition” of radiation has several theoretical aspects, which could be classified e.g. according to the scale or object of interest as
  • macroscopic (e.g. dose distribution in extended bodies or an organ),

  • microscopic (e.g. in a mammalian cell or a makromolecule),

  • radiation field related (e.g. radiation shielding, differential energy loss), and

  • target related (e.g. yields of chemically reactive species, induction of mutations).


Energy Deposition Track Structure Heavy Charged Particle Total Excitation Cross Section Secondary Electron Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baum, J.W. , Varma, M.N., Wingate, C.L., Paretzke, H.G., and Kuehner, A.V., 1973, Nanometer Dosimetry of heavy ion tracks, BNL-Report 18219Google Scholar
  2. Berger, M.J., 1974, Some new transport calculations on the deposition of energy in biological materials by low-energy electrons, in : “Fourth Symposium on Microdosimetry”, Booz, J., Ebert, H.G., Eickel, R., and Waker, A., eds., CEC, Brussels, EUR 5122Google Scholar
  3. Combecher, D., Kollerbaur, J., Leuthold, H., Paretzke, H.G., and Burger, G., 1974, Energy spectra of degraded electrons in water vapour and in carbon, loc. cit. Paretzke (1979 a)Google Scholar
  4. Fano, U., 1979 , The formulation of track structure theory, in : “Charged Particle Tracks in Solids and Liquids”, Adams, G.E., Bewley, D.K., and Boag, J.W., eds., The Institute of Physics, London.Google Scholar
  5. Hamm, R.N., Wright, H.A., Ritchie, R.H., Turner, J.E., and Turner, T.P., Monte Carlo calculation of transport of electrons through liquid water, loc. cit. Paretzke (1975).Google Scholar
  6. Harder, D., 1964, Physikalische Grundlagen zur relativen biologischen Wirksamkeit verschiedener Strahlenarten, Biophysik, 1:225.CrossRefGoogle Scholar
  7. Katz, R., Ackerson, B., Homayoonfar, M., and Sharma, S., 1971, Inactivation of cells by heavy ion bombardment, Radiat. Res. 47:402.CrossRefGoogle Scholar
  8. Kim, Y.-K., 1975, Energy distribution of Secondary Electrons, Radiat. Res. 64: 96CrossRefGoogle Scholar
  9. Kim, Y.-K., and Inokuti, M., 1973, Slow electrons ejected from He by fast charged particles, Phys. Rev. A 7:1257.ADSCrossRefGoogle Scholar
  10. Kutcher, G.J. and Green, A.E.S., 1976, Energy deposition in liquid water, Radiat. Res. 67: 408CrossRefGoogle Scholar
  11. Lea, D.E., 1944, “Actions of Radiation on Living Cells”, University Press, Cambridge.Google Scholar
  12. Meyer, A., and Murray, R.B., 1962. Effect of Energetic Secondary Electrons on the Scintillation Process in Alkali Halide Crystals, Phys. Rev., 128:98.ADSCrossRefGoogle Scholar
  13. Olivero, J.J., Stagat, R.W., and Green, A.E.S., 1972, Electron deposition in water Vapor with atmospheric Applications, J. Geophys. Res. 77:4797Google Scholar
  14. Paretzke, H.G., 1974, Comparison of track structure calculations with experimental results, loc. cit. Berger (1974)Google Scholar
  15. Paretzke, H.G., 1975, An Appraisal of the Relative Importance for Radiobiology of Effects of Slow Electrons, in: “Fifth Symposium on Microdosimetry”, Booz, J., Ebert, H.G., and Smith, B.G.R., eds., Comm. Europ. Communities, Brussels, EUR 5452.Google Scholar
  16. Paretzke, H.G., 1979 a, On Limitations of Classical Microdosimetry and Advantages of Track Structure Analysis for Radiation Biology, in: “Sixth Symposium on Microdosimetry”, Booz, J., and Ebert, H.G., eds., Harwood Academic Publishers Ltd., Brussels.Google Scholar
  17. Paretzke, H.G., 1979 b, Track Structure calculations and their accuracy, 6th Int. Congr. on Radiat. Res., Tokyo, in press.Google Scholar
  18. Platzman, R.L., 1967, Energy Spectrum of Activations in the Action of Ionizing Radiation, in : “Radiation Research, Proceed. of the 3rd Intern. Congress”, Silini, G., ed., Cortina d AmpezzoGoogle Scholar
  19. Terrisol, M., and Patau, J.P., 1974, Simulation du transport d électrons d énergie inférieure à un keV par une méthode de Monte-Carlo, loc. cit. Berger (1974).Google Scholar
  20. Varma, M.N., Paretzke, H.G., Baum, J.W., Lyman, J.T., and Howard, J., 1975, Dose as a function of radial distance from a 930 MeV He-4 ion beam, BNL-Report 20476 RGoogle Scholar
  21. Wilson, W.E., Toburen, L.H., and Paretzke, H.G., Calculation of energy deposition spectra in small gaseous sites and its applicability to condensed phase, loc. cit. Paretzke (1979 a).Google Scholar
  22. Wingate, C.L., and Baum, J.W., 1967, Micro-radial distribution of dose and LET for alpha and proton beams, BNL-Report 14767.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Herwig G. Paretzke
    • 1
  1. 1.Institut für StrahlenschutzGesellschaft für Strahlen- und UmweltforschungNeuherbergFed. Rep. Germany

Personalised recommendations