Skip to main content

Part of the book series: Ettore Majorana International Science Series ((EMISS,volume 2))

  • 191 Accesses

Abstract

In the strict sense, this paper will not discuss any real “advances” in radiation monitoring. What is presented here has been known and applied at high-energy accelerator laboratories for several years. However, the increasing application of a variety of high-LET radiations, produced by accelerators, to radiodiagnosis and radiotherapy which have been described in this course has led to the need to more widely disseminate this knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. International Commission on Radiological Protection. “The RBE for High-LET Radiations with Respect to Mutagenesis” in ICRP Publication No. 18, Pergamon Press. Oxford (1972).

    Google Scholar 

  2. H. H. Rossi and C. W. Mays, Leukemia Risk from Neutrons. Health Physics 34: 333 (1978).

    Article  Google Scholar 

  3. A. Rindi, R. H. Thomas, 1973, The Radiation Environment of High-Energy Accelerators, Annu. Rev, of Nucl. Sci. 23: 315, (1973).

    Article  ADS  Google Scholar 

  4. R. H. Thomas, and A. Rindi, (Eds), “Proceedings of the First Course on High-Energy Radiation Dosimetry and Protection” Erice, Italy. October 1975, in I.E.E.E. Trans Nuclear Science Ns-23, No. 4. (1976).

    Google Scholar 

  5. R. H. Thomas, Book Review, NCRP Report No. 51 Health Physics 36: 92 (1979).

    Google Scholar 

  6. E. Fermi, E. Amaldi, O. D’Agostino, F. Rasetti, and E. Segre, Proc. Roy Soc. (London) A: 146, 483 (1934).

    Article  ADS  Google Scholar 

  7. International Commission on Radiological Protection, “General Principles of Monitoring for Radiation Protection of Workers” in ICRP Publication No. 12, Pergamon Press, Oxford, Par. 4 (1969).

    Google Scholar 

  8. Op. Cit. Ref. 7. Par. 28.

    Google Scholar 

  9. Op. Cit. Ref. 7. Par. 42.

    Google Scholar 

  10. Op. Cit. Ref. 7. Par. 86.

    Google Scholar 

  11. Op. Cit. Ref. 7. Par. 45–47.

    Google Scholar 

  12. V. Perez-Mendez, Instrumentation—Active Detectors. Lecture No. 9, in “Advances in Radiation Protection and Dosimetry in Medicine” Course Proceedings, International School of Radiation Damage and Protection, Ettore Majorana Centre for Scientific Culture, Erice, Italy (Sept. 1979).

    Google Scholar 

  13. R. H. Thomas, Instrumentation—Passive Detectors. Lecture No. 10, in “Advances in Radiation Protection and Dosimetry in Medicine” Course Proceedings, International School of Radiation Damage and Protection, Ettore Majorana Centre for Scientific Culture, Erice, Italy (Sept. 1979).

    Google Scholar 

  14. J. R. Castro, J. M. Quivey, J. T. Lyman, G. T. Y. Chen, C. A. Tobias, L. L. Kanstein, and R. E. Walton, Heavy-ion Therapy in Biological and Medical Research with Accelerated Heavy Ions at the Bevalac 1974–1977, Lawrence Berkeley Laboratory Report LBL-5610, pp. 182–218 (1977).

    Google Scholar 

  15. A. R. Smith, et al., Neutron Flux Density and Secondary-Particle Energy Spectra at the 184 Inch Synchrocyclotron Medical Facility, Lawrence Berkeley Laboratory Report LBL-6721, (1978).

    Book  Google Scholar 

  16. J. B. McCaslin, W. R. Schimmerling, A. R. Smith and R. H. Thomas, Neutron Fluence Rates and Energy Spectra at the 184 Inch Synchrocyclotron Medical Facility, Paper read at Health Physics Society Meeting, Philadelphia, July 8–13, 1979.

    Google Scholar 

  17. W. S. Schimmerling, A. R. Smith, and R. H. Thomas, Neutron Flux Density and Secondary Particle Energy Spectra at the 184 Inch Synchrocyclotron Medical Facility, XII International Conference on Medical and Biological Engineering, Jerusalem, August 19–24, 1979.

    Google Scholar 

  18. J. T. Routti, High-Energy Neutron Spectroscopy with Activation Detectors, Incorporating New Methods for the Analysis of Ge(Li) Gamma-Ray Spectra and the Solution of Fredholm Integral Equations, Ph.D. Thesis—University of California at Berkeley, Lawrence Berkeley Laboratory Report UCRL-18514 (1969).

    Google Scholar 

  19. A. Rindi, An Analytical Expression for the Neutron Flux to Absorbed Dose Conversion Factor. Health Physics 33: 264 (1979).

    Google Scholar 

  20. Title 10, Part 50, Appendix I, Code of Federal Regulations, Federal Register 36: 111 (1971).

    Google Scholar 

  21. Environmental Radiation Protection Requirements for Normal Operations of Activities in the Uranium Fuel Cycle, Notice of Proposed Rulemaking, U. S. Environmental Protection Agency (1973).

    Google Scholar 

  22. W. M. Lowder and C. V. Gogolak, Experimental and Analytical Radiation Dosimetry Near a Large BWR IEEE Trans., Nucl. Sci. NS-21, No. 1: 423 (1974).

    Article  Google Scholar 

  23. W. M. Lowder and C. V. Gogolak, Experimental and Analytical Radiation Dosimetry Near a Large BWR IEEE Trans., Nucl. Sci. NS-21, No. 1: 429 (1974).

    Google Scholar 

  24. A. R. Jones, A Gamma Monitor for Measuring Environmental Gamma Doses and Dose Rates, Atomic Energy of Canada Limited Report AECL-3989 (1974).

    Google Scholar 

  25. A. R. Jones, Measurement of Low Level Environmental Gamma Dose with TLD’s and Geiger Counters, IEEE Trans., Nucl. Sci. NS-21, No. 1: 456 (1974).

    Article  Google Scholar 

  26. H. L. Beck, J. A. DeCampo, et al., New Perspective on Low Level Environmental Radiation Monitoring Around Nuclear Facilities, Nuclear Technology 14: 232 (1972).

    Google Scholar 

  27. M. E. Cassidy, S. Watnick, et al., A Computer-Compatible field Monitoring System, IEEE Trans, Nucl. Sci. 21, No. 1: 461 (1974).

    Article  ADS  Google Scholar 

  28. H. W. Wollenberg, H. W. Patterson, A. R. Smith, and L. D. Stephens, Natural and Fallout Radioactivity in the San Francisco Area, Health Physics 17, No. 2: 313, (1969).

    Article  Google Scholar 

  29. J. D. Chester, R. L. Chase, and S. Wood, A Digital Environmental Monitor, Brookhaven National Laboratory Report BNL-16922 (1972).

    Google Scholar 

  30. G. de Planque-Burke, Thermoluminescent Dosimeter Measurements of Perturbations of the Natural Radiation Environment, in “Proc. of Second Intl. Symp. on the Natural Radiation Environment,” U.S. Atomic Energy Commission Symposium Series (1974).

    Google Scholar 

  31. C. L. Lindeken, D. E. Jones, and R. E. McMillen, Environmental Radiation Background Variations Between Residences, Health Physics 24: 81 (1973).

    Article  Google Scholar 

  32. H. W. Patterson and R. H. Thomas, Accelerator Health Physics, Academic Press, New York (1973).

    Google Scholar 

  33. L. D. Stephens and H. S. Dakin, A High Reliability Environmental Radiation Monitoring and Evaluation System, Proc. of the Vlth International Congress of the Société Francaise de Radioprotection, Bordeaux, France, March 27–31, 1972.

    Google Scholar 

  34. R. H. Thomas (Ed), The Environmental Surveillance Program of the Lawrence Berkeley Laboratory, Lawrence Berkeley Laboratory Report LBL-4827 (1976).

    Google Scholar 

  35. H. L. Beck, W. M. Lowder and J. C. McLaughlin, In Situ External Environmental Gamma Ray Measurements Utilizing Ge(Li) and Nal(Tl) Spectrometry and Pressurized Ionization Chambers, IAEA SM/148–2, IAEA, Vienna.

    Google Scholar 

  36. G. de Planque-Burke, Variations in Natural Environmental Gamma Radiation and its Effect on the Interpretability of TLD Measurements made Near Nuclear Facilities. USAEC., Health and Safety Laboratory, (1974).

    Google Scholar 

  37. G. de Planque-Burke and K. O’Brien, USAEC Report, HASL-283 (1974).

    Google Scholar 

  38. M. Eisenbud, Environmental Radioactivity, chapter 7, in “Natural Radioactivity,” Academic Press, New York (1973).

    Google Scholar 

  39. L. B. Lockhart, Atmospheric Radioactivity Studies at U. S. Naval Research Laboratory, U. S. Naval Research Laboratory, Rep. 5249 (1958).

    Google Scholar 

  40. R. M. Sievert and B. Hulquist, Acta Radiologica, 37: 388 (1952).

    Article  Google Scholar 

  41. P. R. J. Burch, J. C. Duggleby, B. Oldroyd, and F. W. Spiers, in “The Natural Radiation Environment”, p. 767, The University of Chicago Press, Chicago.

    Google Scholar 

  42. H. L. Beck and G. de Planque-Burke, USAEC Report HASL-195 (1968).

    Google Scholar 

  43. C. V. Gogolak and K. M. Miller, Method for Obtaining Radiation Exposure due to a Boiling Water Reactor Plume from Continuously Monitoring Ionization Chambers, Health Physics 27: 132 (1974).

    Google Scholar 

  44. W. W. Goldworthy, Transistorized portable counting rate meter, Nucleonics 18: 92 (1960).

    Google Scholar 

  45. L. D. Stephens, H. W. Patterson and A. R. Smith, Fallout and Natural Background in the San Francisco Bay Area, Health Physics 4: 267 (1961).

    Article  Google Scholar 

  46. H. W. Patterson, and R. W. Wallace, Report on a Radiation Survey Made in Egypt, India and Ceylon in January 1963, Health Physics 12: 935 (1966).

    Article  Google Scholar 

  47. H. A. Wollenberg and A. R. Smith, Studies in terrestrial gamma radiation in “The Natural Radiation Environment”., University of Chicago Press, Chicago (1964).

    Google Scholar 

  48. H. A. Wollenberg and A. R. Smith, A concrete low-background counting enclosure, Health Physics 12: 53 (1966).

    Article  Google Scholar 

  49. H. L. Beck, J. DeCampo and C. Gogolak, In Situ Ge(Li) and Nal(Tl) Gamma-Ray Spectrometry, USAEC Health and Safety Laboratory Report NASL-258 (1972).

    Book  Google Scholar 

  50. T. Nakamura, et al., Skyshine of Neutrons and Photons from the INS F M Cyclotron, p. 43, Institute for Nuclear Study, Tokyo Univ. Ann. Report (1975).

    Google Scholar 

  51. P. L. Phelps, et al., Ge(Li) Low Level in-situ Gamma Ray Spectrometer Application, IEEE Trans, Nucl. Sci. NS-21, No. 1: 543 (1974).

    Article  Google Scholar 

  52. G. de Planque-Burke and T. F. Gesell, Second International Intercomparison of Environmental Dosimeters, Health Physics 36: 221 (1979).

    Article  Google Scholar 

  53. A. Bonifas, et al., On the Use of Thermoluminescent Dosimetry for Stray Radiation Monitoring on the CERN Site, CERN Health Physics Internal Report HA-74–138 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thomas, R.H. (1980). Radiation Monitoring. In: Thomas, R.H., Perez-Mendez, V. (eds) Advances in Radiation Protection and Dosimetry in Medicine. Ettore Majorana International Science Series, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1715-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1715-0_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1717-4

  • Online ISBN: 978-1-4757-1715-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics