Radiobiological Effects of Pions

  • J. F. Dicello
Part of the Ettore Majorana International Science Series book series (EMISS, volume 2)

Abstract

Biological studies with negative pions have been motivated almost exclusively by their therapeutic potential. There are basically two biological characteristics of negative pions which could prove useful for cancer management, 1) Negative pions have a lower oxygen enhancement ratio (OER) in the Bragg region as compared with conventional radiations, and the variation in sensitivity throughout the cell cycle is reduced with pions. In certain cases, this could produce an increased effect on malignant cells relative to normal cells. 2) The relative biological effectiveness (RBE) of pions in the Bragg region can be greater than that in the entrance region. This coupled with the good localization properties of pions could minimize the damage to normal tissues outside of the treatment volume.

Keywords

Hypoxic Cell Relative Biological Effectiveness Negative Pion Pion Beam Sublethal Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. I. Amols, J. F. Dicello, and M. Zaider, “The RBE at Various Positions In and Near a Large Negative Pion Beam,” Proc. of the 6th Symposium on Microdosimetry, J. Booz and H. G. Ebert, eds. (Harwood Academic Publishers, Ltd., 1978).Google Scholar
  2. D. J. Brenner and F. A. Smith, “Dose and LET Distributions due to Neutrons and Photons Emitted from Stopping Negative Pions,” Phys. Med. Biol. 22: 451 (1977).CrossRefGoogle Scholar
  3. J. F. Dicello, M. Zaider, and M. Takai, “Some Physical Characteristics of Range-Modulated Beams of Pions,” Proc. of the 3rd Meeting on Fundamental and Practical Aspects of the Application of Fast Neutrons and Other High LET Particles in Clinical Radiotherapy, The Hague, The Netherlands, 1978. In press.Google Scholar
  4. L. S. Goldstein, private communication.Google Scholar
  5. M. M. Kligerman, J. F. Dicello, H. T. Davis, R. A. Thomas, C. J. Sternhagen, L. Gomez, and D. F. Petersen, “Initial Comparative Response of Experimental Tumors to Peak Pions and X Rays,” Radiology 116: 181–182 (1975).Google Scholar
  6. M. M. Kligerman, C. F. von Essen, M. K. Khan, A. R. Smith, C. J. Sternhagen, and J. M. Sala, Cancer 43: 1043–1051 (1979).CrossRefGoogle Scholar
  7. M. M. Kligerman, J. M. Sala, S. Wilson, and J. M. Yuhas, “Investigation of Pion Treated Human Skin Nodules for Therapeutic Gain,” Int. J. of Radiat. Oncology, Biol., Phys. 4: 263–265 (1977).CrossRefGoogle Scholar
  8. M. M. Kligerman, A. Smith, J. M. Yuhas, S. Wilson, C. J. Sternhagen, J. A. Heiland, and J. M. Sala, “The Relative Biological Effectiveness of Pions in the Acute Response of Human Skin,” Int. J. Radiât. Oncology, Biol., Phys. 3: 335–339 (1977).CrossRefGoogle Scholar
  9. M. M. Kligerman, G. West, J. F. Dicello, C. J. Sternhagen, J. E. Barnes, K. Loeffler, F. Dobrowolski, H. T. Davis, J. N. Bradbury, T. F. Lane, D. F. Petersen, and E. A. Knapp, “Initial Comparative Response to Peak Pions and X Rays of Normal Skin and Underlying Tissue Surrounding Superficial Metastatic Nodules,” Amer. J. Roent. 126: 261–267 (1976).Google Scholar
  10. M. R. Raju, H. I. Amols, E. Bain, S. G. Carpenter, J. F. Dicello, J. P. Frank, R. A. Tobey, and R. A. Walters, “Biological Effects of Negative Pions,” Int. J. of Radiat. Oncology, Biol., Phys. 3: 327–334 (1977).CrossRefGoogle Scholar
  11. M. R. Raju, H. I. Amols, and S. G. Carpenter, “A Combination of Sensitizers with High LET Radiations,” Brit. J. Cancer 37 : 189–193 (1978).Google Scholar
  12. M. R. Raju, H. I. Amols, J. B. Robertson, “Effect of Negative Pions on Cells Plated on Glass and Plastic Surfaces,” Radiat. Res. 75: 439–442 (1978a).CrossRefGoogle Scholar
  13. M. R. Raju, H. I. Amols, S. G. Carpenter, R. A. Tobey, and R. A. Walters, “Age Response of CHO Cells Exposed to Negative Pions,” Radiat. Res. 76: 219–223 (1978b).CrossRefGoogle Scholar
  14. M. R. Raju, H. I. Amols, E. Bain, S. G. Carpenter, R. A. Cox, and J. A. Robertson, “Cell Survival as a Function of Depth for Modulated Negative Pion Beams,” Int. J. Radiat. Oncology, Biol., Phys. 4: 841–844 (1978c).CrossRefGoogle Scholar
  15. M. R. Raju, H. I. Amols, E. Bain, S. G. Carpenter, R. A. Cox, and J. E. Robertson, “OER and RBE for Negative Pion Beams of Different Peak Widths,” Brit. J. Radio. 52: 494–498 (1979).CrossRefGoogle Scholar
  16. M. E. Schillaci and D. L. Roeder, “Dose Distributions Due to Neutrons and Photons Resulting from Negative Pion Capture in Tissue,” Phys. Med. Biol. 18:821–829 (1973).CrossRefGoogle Scholar
  17. L. D. Skarsgard and B. Palcic, “Pretherapeutic Research Programs at π- Meson Facilities,” Proc. of the XIIIth Int. Congress of Radiology (Madrid), Int. Congress Series No. 339, Radiology 2: 447–454 (1974).Google Scholar
  18. R. H. Withers, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • J. F. Dicello
    • 1
  1. 1.Los Alamos Scientific LaboratoryUniversity of CaliforniaLos AlamosUSA

Personalised recommendations