Dosimetry and Radiobiology of Protons as Applied to Cancer Therapy and Neurosurgery

  • Börje Larsson
Part of the Ettore Majorana International Science Series book series (EMISS, volume 2)


In radiology, accelerated light ions, for example the protons considered in this paper, are generally classified as “charged heavy particles”. A beam of such particles, accelerated to a kinetic energy of some hundred millions electron volts per atomic mass unit, is able to penetrate thick layers of tissue with only a small amount of scatter, comparable in magnitude with that of the most energetic roentgen rays, at present used in radiotherapy. As with electrons, the charged heavy particles create ionization of practically continuous density along their path of penetration. In contrast, however, to a high energy electron which produces a fairly sparse ionization as it moves nearly at the velocity of light along most of its track, a charged heavy particle induces a marked increase in specific ionization in the last centimeters of its course of penetration, where its velocity decreases gradually with increasing depth. A beam of nearly monoenergetic charged heavy particles has, indeed, a sharp maximum, “the Bragg peak”, near the depth at which the particles are brought to rest. This effect is accentuated by the fact that the charged heavy particles, due to their large mass, are less influenced by statistical fluctuations in their attenuating collisions, and therefore have little range variation.


Proton Beam Fast Neutron Bragg Peak Linear Energy Transfer Secondary Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. R. Wilson, Radiological use of fast protons, Radiology 47:487 (1946).Google Scholar
  2. 2.
    C. A. Tobias, H. O. Anger, and J. H. Lawrence, Radiological use of high energy deuterons and alpha particles, Am.J.Roentgenol, 67:1 (1952).Google Scholar
  3. 3.
    C. A. Tobias, J. E. Roberts, J. H. Lawrence, B. V. A. Low-Beer, H. O. Anger, J. L. Born, R. McCombs, and C. Huggins, Irradiation hypophysectomy and related studies using 340-MeV protons and 190-MeV deuterons, in: “Peaceful Uses of Atomic Energy, Proc. Internat. Conf. Geneva”, Vol. 10, United Nations (1956).Google Scholar
  4. 4.
    B. Larsson, T. Svedberg, and H. Tyrén, Djupterapi med protoner vid Uppsalasynkrocyklotronen, in: “Riksföreningen för Kräftsjukdomarnas Bekämpande, Årsbok 1952–1956,” H. Bergstrand, ed., Almqvist & Wiksell, Stockholm (1957).Google Scholar
  5. 5.
    B. Larsson, L. Leksell, B. Rexed, B. Sourander, W. Mair, and B. Andersson, The high-energy proton beam as a neurosurgical tool, Nature 182:1222 (1958).ADSCrossRefGoogle Scholar
  6. 6.
    A. M. Koehler and W. M. Preston, Protons in radiation therapy, comparative dose distributions for protons, photons, and electrons, Radiology 104:191 (1972).Google Scholar
  7. 7.
    V. S. Choroškov, V. P. Dželepov, L. L. Goldin, M. F. Lomanov, O. V. Savičenko, and S. Tesch, Teilchenstrahlen in der Medizin, Wissenschaft u. Fortschritt, Berlin 23:347 (1973).Google Scholar
  8. 8.
    V. Abasov, B. Astrakhan, N. Blokhin et al., Use of proton beams in the USSR for medical and biological purposes, Communic. Joint Inst.Nucl.Res, E-5854, Dubna (1971).Google Scholar
  9. 9.
    B. A. Kannov, D. L. Karlin, V. B. Nizkovolos, and I.J. Senichev, Physical-technical facility for proton therapy on LIMP 1000 MeV synchrocyclotron, in: “Proceedings of the First International Seminar on the Uses of Proton Beams in Radiation Therapy, Moscow, December 6–11, 1977,” Vol. I, M.I. Lomakin. ed., Atomizdat, Moscow (1979).Google Scholar
  10. 10.
    B. Larsson, Pre-therapeutic physical experiments with high energy protons. An extended version of the contribution to the symposium on Therapy with Beams of High Energy Particles, at the annual congress of the British Institute of Radiology on December 10, 1959, Brit.J.Radiol, 34:143 (1961).CrossRefGoogle Scholar
  11. 11.
    C. A. Tobias, J.T. Lyman and J. H. Lawrence, Some considerations of physical and biological factors in radiotherapy with high-LET radiations including heavy particles, π-mesons and fast neutrons, in: “Progress in Atomic Medicine: Recent Advances in Nuclear Medi- cine,” Vol. 3, J. H. Lawrence, ed., Grune and Stratton Inc., New York (1971).Google Scholar
  12. 12.
    M. Kohl, German patent 192571 (1906), cited by F. Wachsmann and G. Barth, in: “Die Bewegungsbestrahlung,” ed., George Thieme, Stuttgart (1959).Google Scholar
  13. 13.
    M. Goitein, The measurement of tissue heterodensity to guide charged particle therapy, in “Particles and Radiation Therapy, Second International Conference, September 14–17, 1976, Berkeley, California,” W. E. Powers, ed., Perman Press, New York (1977).Google Scholar
  14. 14.
    S. Falkmer, B. Fors, B. Larsson, A. Lindell, J. Naeslund, and S. Sténson, Pilot study on proton irradiation of human carcinoma, Acta radiol, 53:33 (1962).Google Scholar
  15. 15.
    G. W. Barendsen, Responses of cultured cells, tumours and normal tissues to radiations of different linear energy transfer, in: “Current topics in radiation research,” Vol. IV, M. Ebert and A. Howard, eds, North-Holland Publ., Amsterdam (1968).Google Scholar
  16. 16.
    J. F. Fowler, Fast neutron therapy-physical and biological considerations, in: “Modern Trends in Radio-Therapy,” Vol. 1, T. J. Deeley and C. A. P. Wood, eds, Butterworth, London (1967).Google Scholar
  17. 17.
    M. R. Raju and C. Richman, Negative pion radiotherapy: physical and radiobiological aspects, Current Topics in Radiation Research Quarterly, 8:159 (1972).Google Scholar
  18. 18.
    S. Graffman and B. Larsson, High energy protons for radiotherapy — a review of activities at the 185-MeV synchrocyclotron in Uppsala, Atomkernenergie 27:148 (1976).Google Scholar
  19. 19.
    B. Larsson, Proton and heavy-ion therapy, in: “Health and Medical Physics,” J. Baarli, ed., Soc.Italiana di Fisica, Bologna (1977).Google Scholar
  20. 20.
    S. Dahlgren, A. Ingemarsson, S. Kullander, B. Lundström, P. U. Renberg, K. Ståhl, H. Tyrén, and A. Åsberg, Conversion studies for the Uppsala synchrocyclotron, in: “Seventh International Conference on Cyclotrons and their Applications, Zürich 1975,” W. Joho, ed., Birkhäuser Verlag, Basel (1975).Google Scholar
  21. 21.
    B. Larsson, L. Leksell, and B. Rexed, The use of high energy protons for cerebral surgery in man, Acta chir.scand, 125:1 (1963).Google Scholar
  22. 22.
    J. Arndt, E. O. Backlund, B. Larsson, L. Leksell, G. Norén, K. Rosander, T. Rähn, B. Sarby, L. Steiner, and J. Wennerstrand, Stereotactic irradiation of intracranial structures: physical and biological considerations, in: “Stereotactic cerebral irradiation,” G. Szikla, ed., Elsevier, Amsterdam (1979).Google Scholar
  23. 23.
    R. N. Kjellberg, Stereotactic Bragg peak proton radiosurgery method, Ibid.Google Scholar
  24. 24.
    B. Larsson and B.A. Kihlman, Chromosome aberrations following irradiation with high-energy protons and their secondary radiation: A study of dose distribution and biological efficiency using root-tips of Vicia faba and Allium cepa, Int. J. Radiat.Biology 2:8 (1960).CrossRefGoogle Scholar
  25. 25.
    B. Jung, B. Larsson, B. Rosengren, K. Ståhl, and W. Wretlind, Roentgen stand for field positioning in high-energy radiotherapy, Acta radiol.Ther.Phys.Biol, 7:282 (1968).CrossRefGoogle Scholar
  26. 26.
    L. Leksell, “Stereotaxis and radiosurgery — an operative system,” Ch. C. Thomas, Springfield (1971).Google Scholar
  27. 27.
    A. C. Birge, H. O. Anger, and C. A. Tobias, Heavy chargedparticle beams, in: “Radiation Dosimetry,” G. J. Hine and G. L. Brownell, eds, Academic Press, New York (1956).Google Scholar
  28. 28.
    B. Larsson, On the application of a 185 MeV proton beam to experimental cancer therapy and neurosurgery: A biophysical study, Acta Universitatis Upsaliensis. Abstracts of Uppsala Dissertations in Science, No 9 (1962).Google Scholar
  29. 29.
    B. G. Karlsson, Methoden zur Berechnung und Erzielung einiger für die Tiefentherapie mit hoch-energetischen Protonen günstiger posisverteilungen, Strahlentherapie 124:491 (1964).Google Scholar
  30. 30.
    S. Falkmer, B. Larsson, and S. Sténson, Effects of single dose proton irradiation of normal skin and Vx2 carcinoma in rabbit ears, a comparative investigation with protons and roentgen rays, Acta radiol, 52:217 (1959).CrossRefGoogle Scholar
  31. 31.
    P. Bonet-Maury, A. Deysine, M. Frilley, and C. Stefan, Efficacité biologique relative des protons de 157 MeV, C. R. Acad.Sci., Paris 251:3087 (1960).Google Scholar
  32. 32.
    K. J. Johanson and B. Larsson, Effect of 180 MeV protons and60Co radiation on the incorporation of 125I-iodo-2′-deoxyuridine into intestinal and spleenic deoxyribonucleic acid in mice, Acta radiol.Ther. Phys.Biol, 11:452 (1972).CrossRefGoogle Scholar
  33. 33.
    M. Danielsson, B. Engfeldt, B. Fors, B. Larsson, and J. Naeslund, Effect of high-energy protons on Vx2 carcinoma implanted in the lower abdominal wall of the rabbit, Acta obstet.gynecol.Scand, 47:373 (1968).CrossRefGoogle Scholar
  34. 34.
    S. Sténson, Effects of proton and roentgen radiation on the rectum of the rat, Acta radiol.Ther.Phys. Biol, 8:263 (1969).CrossRefGoogle Scholar
  35. 35.
    S. Sténson, Weight change and mortality of rats after abdominal proton and roentgen irradiation, a comparative investigation, Actaradiol.Ther.Phys.Biol, 8:423 (1969).CrossRefGoogle Scholar
  36. 36.
    B. Engfeldt, B. Larsson, C. Naeslund, J. Naeslund, and B. Tjernberg, Effect of single dose or fractionated proton irradiation on pulmonary tissue and Vx2 carcinoma in the lung of the rabbit Acta radiol.Ther. Phys.Biol, 10:298 (1971).CrossRefGoogle Scholar
  37. 37.
    K. J. Johanson, Deoxyribonucleic acid metabolism in the small intestine in vivo and in vitro. A study of the normal and 180-MeV proton or 60Co gamma irradiated mouse, Acta Universitatis Upsaliensis, Abstracts of Uppsala Dissertations in Science, No. 204 (1972).Google Scholar
  38. 38.
    B. Fors, B. Larsson, A. Lindell, J. Naeslund, and S. Sténson, Effect of high energy protons on human genital carcinoma, Acta radiol, 2:384 (1964).CrossRefGoogle Scholar
  39. 39.
    S. Graffman, B. Jung, B. A. Nohrman, and R. Bergström, Supplementary treatment of nasopharyngeal tumours with high-energy protons, Acta radiol, 6:361 (1967).CrossRefGoogle Scholar
  40. 40.
    S. Graffman, W. Haymaker, R. Hugosson, and B. Jung, High energy protons in the postoperative treatment of malignant glioma, Acta radiol.Ther.Phys.Biol, 14:445 (1975).Google Scholar
  41. 41.
    B. Larsson and S. Sténson, Reduction of radiation damage to the intestinal mucous membrane by local hypoxia, Nature 205:364 (1965).ADSCrossRefGoogle Scholar
  42. 42.
    B. Larsson, L. Leksell, B. Rexed, and P. Sourander, Effects of high energy protons on the spinal cord, Acta radiol, 51:52 (1959).Google Scholar
  43. 43.
    B. Rexed, W. Mair, P. Sourander, B. Larsson, and L. Leksell, Effect of high energy protons on the brain of the rabbit, Acta radiol, 53:289 (1960).CrossRefGoogle Scholar
  44. 44.
    B. Larsson, Blood vessel changes following loacl irradiation of the brain with high-energy protons, Acta Societatis Medicorum Upsaliensis 65:61 (1960).Google Scholar
  45. 45.
    L. Leksell, B. Larsson, B. Andersson, B. Rexed, P. Sourander, and W. Mair, Lesions in the depth of the brain produced by a beam of high energy protons, Acta radiol, 54:251 (1960).CrossRefGoogle Scholar
  46. 46.
    B. Andersson, B. Larsson, L. Leksell, W. Mair, B. Rexed, P. Sourander, and J. Wennerstrand, Histopathology of late local radiolesions in the goat brain, Acta radiol.Ther.Phys.Biol, 9:385 (1970).CrossRefGoogle Scholar
  47. 47.
    W. Mair, B. Rexed, and P. Sourander, Histology of the surgical radiolesion in the human brain as produced by high-energy protons, Radiat.Res.Suppl, 7:384 (1967).CrossRefGoogle Scholar
  48. 48.
    S. Graffman, B. Jung, and B. Larsson, Design studies for a 200 MeV proton clinic for radiotherapy, in: “Proc. Sixth International Cyclotron Conference, Vancover 1972,” American Institute of Physics, (1973).Google Scholar
  49. 49.
    “Particle Radiation Therapy, International Workshop, October 1–3, 1975, Key Biscayne, Florida,” W. E. Powers, ed., American College of Radiology, Philadelphia (1976) and “Particles and Radiation Therapy, Second International Conference, September 14–17, 1976, Berkeley, California,” W E Powers, ed., Pergamon Press, New York 1977).Google Scholar
  50. 50.
    “Proceedings of the First International Seminar on the Uses of Proton Beams in Radiation Therapy, Moscow, December 6–11, 1977,” Vol. 1–3, M. I. Lomakin, M. F. Lomanov, and T. G. Ratner, eds., Atomizdat, Moscow (1979).Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Börje Larsson
    • 1
  1. 1.Department of Physical Biology, Gustaf Werner InstituteUniversity of Uppsala21 UppsalaSweden

Personalised recommendations