The parameters relating to the interaction of particles and gas in a dispersed-phase flow are presented in this chapter. These parameters are essential to the development of numerical and analytic submodels of pulverized-coal combustion.


Reynolds Number Mach Number Nusselt Number Drag Coefficient Knudsen Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. M. Tchen, Mean Value and Correlation Problems Connected with the Motion of Small Particles Suspended in a Turbulent Fluid, Ph.D. Thesis, Delft, The Hague (1947).Google Scholar
  2. 2.
    S. K. Friedlander, Behavior of suspended particles in a turbulent fluid, AIChE J. 3 (3), 381–385 (1957).CrossRefGoogle Scholar
  3. 3.
    S. L. Soo, Fluid Dynamics of Multiphase Systems, Blaisdell, Waltham, Mass. (1967).Google Scholar
  4. 4.
    V. W. Goldschmidt and S. Eskanazi, Two-phase turbulent flow in a plane jet, J. App. Mech. 33(E) (4), 735–747 (1966).Google Scholar
  5. 5.
    V. W. Goldschmidt, M. Householder, G. Ahmadi, and S. C. Chuang, Turbulent diffusion of small particles suspended in turbulent jets, in Progress in Heat and Mass Transfer, Vol. 6 (G. Hetsroni, S. Sideman, and J. P. Hartnett, eds.), Pergamon Press, New York, 487–508 (1972).Google Scholar
  6. 6.
    G. P. Lilly, Effect of particle size on particle eddy diffusivity, Ind. Eng. Chem. Fundam. 12 (3), 269–275 (1973).CrossRefGoogle Scholar
  7. 7.
    J. O. Hinze, Turbulent fluid and particle interaction, in Progress in Heat and Mass Transfer, Vol. 6 (G. Hetsroni, S. Sideman, and J. P. Hartnett, eds.), Pergamon Press, New York, 433–452 (1972).Google Scholar
  8. 8.
    P. O. Hedman and L. D. Smoot, Particle-gas dispersion effects in confined coaxial jets, AIChE J. 21 (2), 372–379 (1975).CrossRefGoogle Scholar
  9. 9.
    V. J. Memmott and L. D. Smoot, Cold flow mixing rate data for pulverized coal reactors, AIChE J. 24 (3), 466–474 (1978).CrossRefGoogle Scholar
  10. 10.
    C. L. Tice and L. D. Smoot, Cold-flow mixing rates with recirculation for pulverized coal reactors, AIChE J. (1978), accepted for publication.Google Scholar
  11. 11.
    R. Peskin and C. J. Kau, Numerical Simulation of Particle Motion in Turbulent Gas-Solid Channel Flow, ASME Paper 76-WA/RE-37, ASME Winter Annual Meeting, New York (1976).Google Scholar
  12. 12.
    J. W. Deardorff, A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers, J. Fluid Mech. 41 (2), 453–480 (1970).CrossRefGoogle Scholar
  13. 13.
    B. E. Launder and D. B. Spalding, Mathematical Models of Turbulence, Academic Press, London (1972).Google Scholar
  14. 14.
    C. T. Crowe, W. Babcock, and P. G. Willoughby, Drag coefficient for particles in rarefied, low Mach number flows, in Progress in Heat and Mass Transfer, Vol. 6 (G. Hetsroni, S. Sideman, and J. P. Hartnett, eds.), Pergamon Press, New York, 419–431 (1972).Google Scholar
  15. 15.
    G. B. Wallis, One-Dimensional Two-Phase Flow, McGraw-Hill Book Co., New York (1969).Google Scholar
  16. 16.
    C. T. Crowe, J. A. Nicholls, and R. B. Morrison, Drag coefficients of inert and burning particle accelerating in gas streams, in Ninth International Symposium on Combustion, Academic Press, New York, 395–406 (1963).Google Scholar
  17. 17.
    P. Eisenklam, S. A. Arunachalam and J. A. Weston, Evaporation rate and drag resistance of burning drops, in Eleventh International Symposium on Combustion, The Combustion Institute, Pittsburgh Pa., 715–728 (1967).Google Scholar
  18. 18.
    R. G. Boothroyd, Flow Gas-Solids Systems, Chapman and Hall, London (1971).Google Scholar
  19. 19.
    H. Wadell, The coefficient of resistance as a function of Reynolds number for solids of various shapes, J. Franklin Inst. 217 (4), 459–490 (1934).CrossRefGoogle Scholar
  20. 20.
    W. H. M. Robins, The significance and application of shape factors in particle size analysis, Brit. J. Appl. Phys., Supplement No. 3, S82 - S85 (1954).CrossRefGoogle Scholar
  21. 21.
    F. Odar, Verification of proposed equation for calculation of forces on a sphere accelerating in a viscous fluid, J. Fluid Mech. 25 (3), 591–592 (1966).CrossRefGoogle Scholar
  22. 22.
    A. B. Basset, A Treatise on Hydrodynamics, Deighton, Bell and Co., Cambridge (1888); republished by Dover Publications, New York (1961).Google Scholar
  23. 23.
    P. G. Saffman, The lift on a small sphere in a slow shear flow, J. Fluid Mech. 22 (3), 385–400 (1965).CrossRefGoogle Scholar
  24. P. G. Saffman, The lift on a small sphere in a slow shear flow, Correction appeared J. Fluid Mech. 31 (3), 624 (1968).CrossRefGoogle Scholar
  25. 24.
    P. N. Rowe, K. T. Claxton, and J. B. Lewis, Heat and mass transfer from a single sphere in an extensive flowing fluid, Trans. Inst. Chem. Eng. 43 (1), T14 - T31 (1965).Google Scholar
  26. 25.
    L. L. Kavanau, Heat transfer from spheres to a rarefied gas in subsonic flow, Trans. ASME 77, 617–624 (1955).Google Scholar
  27. 26.
    R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, John Wiley and Sons, Inc., New York (1960).Google Scholar
  28. 27.
    T. D. Eastop, The influence of rotation on the heat transfer from a sphere to an air stream, Int. J. Heat and Mass Trans. 16, 1954–957 (1973).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • Clayton T. Crowe
    • 1
  1. 1.Washington State UniversityPullmanUSA

Personalised recommendations