Modeling One-Dimensional Systems

  • L. Douglas Smoot
  • Philip J. Smith

Abstract

In this section, a model for predicting properties of premixed propagating methane—air and coal—air flames is described. This model is formulated to treat the general case of propagation in multiphase systems containing finely divided particles or droplets; however, the application emphasized herein is for pulverized coal—air systems. The model can also be used to describe gaseous systems, and has been applied to methane—oxidizer systems. The development that follows emphasizes laminar flows, but treatment of turbulent, propagating flames is also briefly discussed. The model is also two-dimensional, with one dimension being time and the other being distance along the flame; however, since the emphasis here is on the steady-state aspects, it is considered in this chapter on one-dimensional systems.

Keywords

Burning Velocity Flame Propagation Turbulent Flame Laminar Flame Combustion Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Grumer, Recent research concerning extinguishment of coal dust explosions, in Fifteenth Symposium (International) on Combustion, pp. 103 – 114, The Combustion Institute, Pittsburgh, Pa. (1975).Google Scholar
  2. 2.
    J. K. Richmond and I. Liebman, A physical description of coal mine explosions, in Fifteenth Symposiurir (International) on Combustion, pp. 115 – 126, The Combustion Institute, Pittsburgh, Pa. (1975).Google Scholar
  3. 3.
    J. C. Biordi, C. P. Lazzara, and J. F. Papp, Flame structure studies of CH3Br-inhibited methane flames. II. Kinetics and mechanisms, in Fifteenth Symposium (International) on Combustion, pp. 917 – 932, The Combustion Institute, Pittsburgh, Pa. (1975).Google Scholar
  4. 4.
    J. W. Hastie, Mass spectrometric analysis of 1 atm flames: Apparatus and the CH4 02 system, Comb. Flame 21, 187 – 194 (1973).CrossRefGoogle Scholar
  5. 5.
    C. P. Lazzara, J. C. Biordi, and J. F. Papp, Concentration profiles for radical species in a methane—oxygen—argon flame, Comb. Flame 21, 371 – 382 (1973).CrossRefGoogle Scholar
  6. 6.
    R. M. Fristrom, C. Grunfelder, and S. Favin, Methane—oxygen flame structure. I. Characteristic profiles in a low-pressure, laminar, lean, premixed methane—oxygen flame, J. Phys. Chem. 64, 1386 – 1392 (1960).CrossRefGoogle Scholar
  7. 7.
    J. Peeters and G. Mahnen, Reaction mechanisms and rate constants of elementary steps in methane—oxygen flame, in Fourteenth Symposium (International) on Combustion, pp. 133 – 146, The Combustion Institute, Pittsburgh, Pa. (1973).Google Scholar
  8. 8.
    G. E. Andrews and D. Bradley, The burning velocity of methane—air mixtures, Comb. Flame 19, 275 – 288 (1973).CrossRefGoogle Scholar
  9. 9.
    G. E. Andrews and D. Bradley, Limits of flammability and natural convection for methane—air mixtures, in Fourteenth Symposium (International) on Combustion, pp. 1119–1128, The Combustion Institute, Pittsburgh, Pa. (1973).Google Scholar
  10. 10.
    D. Bradley and G. F. Hundy, Burning velocities of methane—air mixtures using hot-wire anemometers in closed-vessel explosions, in Thirteenth Symposium (International) on Combustion, pp. 575–583, in The Combustion Institute, Pittsburgh, Pa. (1971).Google Scholar
  11. 11.
    F. A. Williams, Combustion Theory, Addison—Wesley Publishing Co., Reading, Mass. (1965).Google Scholar
  12. 12.
    W. G. Browne, R. P. Porter, J. D. Verlin, and A. H. Clark, A study of acetylene—oxygen flames, in Twelfth Symposium (International) on Combustion, pp. 1035 – 1047, The Combustion Institute, Pittsburgh, Pa. (1969).Google Scholar
  13. 13.
    D. F. Cooke and A. Williams, Shock tube studies of the ignition and combustion of ethane and slightly rich methane mixtures with oxygen, in Thirteenth Symposium (International) on Combustion, pp. 757 – 775 The Combustion Institute, Pittsburgh, Pa. (1971).Google Scholar
  14. 14.
    A. A. Cordeiro, P. M. Becker, and R. J. Heinsohn, Computer Simulations of Two Lean Premixed Methane—Oxygen Flames, Unpublished paper, Pennsylvania State University (1974).Google Scholar
  15. 15.
    R. H. Essenhigh and J. Csaba, The thermal radiation theory for plane flame propagation in coal dust clouds, in Ninth Symposium (International) on Combustion, pp. 111 – 125, The Combustion Institute, Pittsburgh, Pa. (1963).Google Scholar
  16. 16.
    D. Bhaduri and S. Bandyopadhyay, Combustion in coal dust flames, Comb. Flame 17, 15–25 (1971).CrossRefGoogle Scholar
  17. 17.
    L. D. Smoot, M. D. Horton, F. P. Goodson, G. A. Williams, and W. C. Hecker, Measurement and Prediction of Laminar Flame Propagation in Methane/Coal/Air Suppressant Systems, Paper 74–1112, AIAA 10th Propulsion Conference, San Diego, California (Oct. 21, 1974 ).Google Scholar
  18. 18.
    L. D. Smoot, W. C. Hecker, and G. A. Williams, Predicting propagating methane-air flames, Comb. Flame 26, 323 – 342 (1976).CrossRefGoogle Scholar
  19. 19.
    L. D. Smoot, M. D. Horton, and G. A. Williams, Propagation of laminar coal-air flames, in Sixteenth Symposium (International) on Combustion, pp. 375 – 387, The Combustion Institute, Pittsburgh, Pa. (1976).Google Scholar
  20. 20.
    D. B. Spalding, P. L. Stephenson, and R. G. Taylor, A calculation procedure for the prediction of laminar flame speeds, Comb. Flame 17, 55 – 64 (1971).CrossRefGoogle Scholar
  21. 21.
    M. A. Field, D. W. Gill, B. B. Morgan, and P. G. W. Hawksley, Combustion of Pulverized Coal, The British Coal Utilization Research Association, Leatherhead, Surrey, England (1967).Google Scholar
  22. 22.
    E. M. Suuberg, W. A. Peters, and J. B. Howard, Product composition and kinetics of lignite pyrolysis, ACS Div. Fuel Chem. Preprints, 22 (1), 112 – 136 (1977).Google Scholar
  23. 23.
    R. Edelman and O. Fortune, Some Recent Developments on the Analysis of Exhaust Plume Afterburning, paper given at the Aerospace Science Plume Symposium, San Bernardino, California (1966).Google Scholar
  24. 24.
    H. B. Moretti, A new technique for the numerical analysis of nonequilibrium flows, AIAA J. 3, 223 – 229 (1965).Google Scholar
  25. 25.
    G. A. Williams, The Numerical Solution of a Particle-Laden Propagating Flame Model, M.Sc. Thesis, Brigham Young University, Provo, Utah (1975).Google Scholar
  26. 26.
    W. C. Hecker, A Theoretical Study of the Kinetics, Propagation, and Suppression of Methane-Air Flames, M.Sc. Thesis, Brigham Young University, Provo, Utah (1975).Google Scholar
  27. 27.
    M. D. Horton, F. P. Goodson, and L. D. Smoot, Characteristics of flat, laminar, coal-dust flames, Comb. Flame 28, 187 – 195 (1977).CrossRefGoogle Scholar
  28. 28.
    S. Badzioch and P. G. W. Hawksley, Kinetics of thermal decomposition of pulverized coal particles, Ind. Eng. Chem. Process Design Develop. 9, 521 – 530 (1970).CrossRefGoogle Scholar
  29. 29.
    D. B. Stickler, R. E. Gannon, and H. Kobayashi, Modeling of Coal, paper given at the Eastern States Section Meeting, The Combustion Institute Pittsburgh, Pa. (1975).Google Scholar
  30. 30.
    L. D. Smoot and M. D. Horton, Propagation of laminar pulverized coal-air flames, Prog. Energy Comb. Sci. 3, 235 – 258 (1977).CrossRefGoogle Scholar
  31. 31.
    H. Kobayashi, J. B. Howard, and A. F. Sarofim, Coal devolatilization at high temperatures, in Sixteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, Pa. (1976).Google Scholar
  32. 32.
    G. E. Andrews, D. Bradley, and S. B. Lwakabamba, Turbulence and turbulent flame propagation-A critical appraisal, Comb. Flame 24, 285 – 304 (1975).CrossRefGoogle Scholar
  33. 33.
    H. L. Dryden, A review of the statistical theory of turbulence Q. Appl. Math. 1, 7 – 42 (1943).Google Scholar
  34. 34.
    G. Z. Damkohler, Z. Elecktrochem. 46, 601 (1940).Google Scholar
  35. 35.
    R. Borghi, Chemical Reaction Calculations in Turbulent Flows: Application to a C-Containing Turbojet Plume, AGARD Publication, ONERA, Paris, France (1974).Google Scholar
  36. 36.
    J. Vinckier and A. Van Tiggelen, Structure and burning velocity of turbulent premixed flames, Comb. Flame 12, 561 – 568 (1968).CrossRefGoogle Scholar
  37. 37.
    C. Selph, Generalized Thermochemical Equilibrium Program for Complex Mixtures, Rocket Propulsion Laboratory, Edwards AFB, California (1965).Google Scholar
  38. 38.
    L. D. Smoot, J. R. Thurgood, and P. O. Hedman, The BYU rate-resolution coal combustor, Comb. Sci. and Tech. (1978), submitted for publication.Google Scholar
  39. 39.
    L. A. Vulis, Thermal Regimes of Combustion, McGraw—Hill, New York (1961).Google Scholar
  40. 40.
    A. B. Hedley and W. E. Jackson, Simplified mathematical model of a pulverized coal flame showing effects of recirculating on combustion rate, J. Inst. Fuel 39, 208 (1966).Google Scholar
  41. 41.
    G. Horn, J. Csaba, and D. J. Street, Combustion experiments using a pulverized coal-fired superheater, J. Inst. Fuel 39, 521 (1966).Google Scholar
  42. 42.
    J. M. Beer and K. B. Lee, The effect of residence time distribution on the performance and efficiency of combustion, in Tenth Symposium (International) on Combustion, pp. 1187 – 1202, The Combustion Institute, Pittsburgh, Pa. (1965).Google Scholar
  43. 43.
    W. S. Lewellen, H. Segur, and A. K. Varma, Modeling Two Phase Flow in a Swirl Combustor, Final Report, ERDA Contract No. EY-76-C-02–4062, Aeronautical Research Associates of Princeton, Inc., Princeton, New Jersey (1977).Google Scholar
  44. 44.
    H. R. Batchelder, R. M. Busche, and W. P. Armstrong, Kinetics of coal gasification, I. and E.C. 45, 1856 – 1878 (1953).Google Scholar
  45. 45.
    A. K. Mehta, Mathematical Modeling of Chemical Processes for Low BTU/Gasification of Coal for Electric Power Generation, Final Report, ERDA Contract No. E(49–18)-1545, Combustion Engineering, Inc., Windsor, Connecticut.Google Scholar
  46. 46.
    P. E. George, R. C. Lenzer, J. F. Thomas, J. S. Barnhart, and N. M. Laurendeau, Gasification in Pulverized Coal Flames, Second Annual Progress Report, ERDA-FE-2029–6, The Combustion Laboratory, School of Mechanical Engineering, Purdue University, West Lafayette, Indiana (Aug. 1977).Google Scholar
  47. 47.
    P. Lewis, G. Simons, M. Finson, and E. Tomaszewski, A Model for Entrained Flow Gasifiers, paper presented at Fall Technical Meeting 1977, Eastern Section, The Combustion Institute, Pittsburgh, Pa. (1977).Google Scholar
  48. 48.
    T. R. Blake, Computer Modeling of Coal Gasification Reactors, QPR-FE-1770–23, ERDA Contract EX-76-C-01–1770, System, Science and Software, La Jolla, California (Feb. 1977).Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • L. Douglas Smoot
    • 1
  • Philip J. Smith
    • 2
  1. 1.Brigham Young UniversityProvoUSA
  2. 2.Chemical Engineering DepartmentBrigham Young UniversityProvoUSA

Personalised recommendations