Determination of the Peak Transient Recovery Voltage

  • J. L. Diesendorf
  • S. K. Lowe
  • L. Saunders
Part of the Earlier Brown Boveri Symposia book series (EBBS)


The inherent try of a system at a given location may be predominantly oscillatory or exponential. Interaction effects of the circuit breaker, other than switching resistors, and high frequency transients due to short line faults or local system elements are of little significance in the peak regime. Exponential try’s are frequently disguised by a major superposed oscillation caused by parts of the faulted sub-system which lie outside the primary fault circuit.

The system try should be assessed beyond the highest peak. With an oscillatory try several 100 ps will suffice but about 2 ms is required for exponential try’s. This suggests a system model extending to a radius of 300 km! Fortunately this is not necessary in complex interconnected systems. The model has to cover the whole of the system directly connected to the fault point at the one voltage, however the models of lines going out from remote busbars can usually be markedly simplified. Care must be taken in modelling local transformers although in general an ‘equivalent line’ model suffices for the system behind a transformer. Local loads can have a very significant effect after a few 100 μs despite several stages of transformation to low voltage.

Some simple rules for the calculation of inherent try using a single phase travelling wave computer program are elucidated.


Transmission Line Circuit Breaker Capacitor Bank Fault Current Ground Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. 0. Caldwell, J. L. Diesendorf, S. K. Lowe, P. J. Medhurst, J. R. Mortiss, E. Truupold, A. N. Bird, L. Saunders and A. D. Stokes, Australian studies of try and the influence of breaker interaction by field tests and calculation, CIGRE Report 13–05 (1976)Google Scholar
  2. 2.
    L. V. Bewley, Travelling waves on transmission systems, Dover (1951)Google Scholar
  3. 3.
    A. N. Greenwood, Electrical trinsients in power systems, Wiley - Interscience (1971)Google Scholar
  4. 4.
    C. G. Wagner and G. D. McCann/C. F. Wagner, Wave propagation on transmission lines, Electrical T and D Reference Book, Westinghouse (1964)Google Scholar
  5. 5.
    C. F. Wagner and R. D. Evans, Symmetrical components, McGraw Hill (1933)Google Scholar
  6. 6.
    C. L. Fortescue, Discussion on E. W. Boehne, Trans. AIEE 55 (1936) 192, appearing in 56 (1937) 530Google Scholar
  7. 7.
    P. Hammarland, Transient recovery voltages, Acta Polytechnica, El. Eng. Series, 1, 1 (1947)Google Scholar
  8. 8.
    L. Gosland, ERA Report G/T 104 (1939)Google Scholar
  9. 9.
    W. P. Lewis, Proc. IEE 113 (1966) 2012Google Scholar
  10. 10.
    R. G. Colclaser and D. E. Buettner, Trans. IEEE, PAS 88 (1969) 1028Google Scholar
  11. 11.
    C. F. Wagner, Paper No. 63–1020, IEEE Summer General Meeting (1963)Google Scholar
  12. 12.
    J. R. Carson, Electric circuit theory and operational calculus, McGraw Hill (1926)Google Scholar
  13. 13.
    G. E. Adams, Trans. AIEE, 78 (1959) 639Google Scholar
  14. 14.
    A. Budner, IEEE Trans. PAS 89 (1970) 88Google Scholar
  15. 15.
    J. K. Snelson, IEEE Trans. PAS 91 (1972) 85Google Scholar
  16. 16.
    H. W. Dommel, IEEE Trans. PAS 88 (1969) 388CrossRefGoogle Scholar
  17. 17.
    H. W. Dommel, IEEE Trans. PAS 90 (1971) 2561Google Scholar
  18. 18.
    D. E. Hedman, IEEE Trans. PAS 84 (1965) 200, discussion (1965) 489Google Scholar
  19. 19.
    D. E. Hedman, IEEE Trans. PAS 84 (1965) 205Google Scholar
  20. 20.
    L. M. Wedepohl, Proc. IEE, 110 (1963) 2200Google Scholar
  21. 21.
    L. M. Wedepohl and R. G. Wasley, Proc. IEE 112 (1965) 2113Google Scholar
  22. 22.
    L. M. Wedepohl, Proc. IEE, 113 (1966) 622Google Scholar
  23. 23.
    L. M. Wedepohl and C. S. Indulkar, Proc. IEE 121 (1974) 997Google Scholar
  24. 24.
    ANSI Standard C37.0721–1971Google Scholar
  25. 25.
    R. H. Harper, W. C. Potempa, T. J. Tobin, Investigation of total try - study of system modelling on try calculation and summary of try parameters, CIGRE 13–74 (WG-01) IWDGoogle Scholar
  26. 26.
    R. H. Harner and E. W. Schmunk, Investigation of total try - study of total try parameters on the Allegheny power system 500 kV grid, CIGRE13–74 (WG-01) 23 IWDGoogle Scholar
  27. 27.
    R. H. Harner and J. Rodriguez, IEEE Trans. PAS 91 (1972) 1887Google Scholar
  28. 28.
    A. Braun, H. Huber and H. Suiter, Determination of the try occurring across generator circuit breakers in large modern power stations, CIGRE Report 13–03 (1976)Google Scholar
  29. 29.
    R. G. Colclaser, J. E. Beehler and T. F. Garrity, IEEE Trans. PAS 92 (1975) 943Google Scholar
  30. 30.
    G. Catenacci, Contribution on the study of the initial part of the try, Electra 46 (1976) 39Google Scholar
  31. 31.
    W. S. Meyer and H. W. Dommel, IEEE Trans. PAS 93 (1974) 1401Google Scholar
  32. 32.
    D. E. Hedman and S. R. Lambert, IEEE Trans. PAS 95 (1976) 197CrossRefGoogle Scholar
  33. 33.
    D. K. Tran, Parts I and II, Proc. IEEE 124 (1977) 133Google Scholar
  34. 34.
    I. E. C. Publication 56, third edition, esp. 56–2 and 56–4, and current draft revision proposalsGoogle Scholar
  35. 35.
    M. B. Humphries, This volumeGoogle Scholar
  36. 36.
    A. J. Potter, Electra 34 (1974) 138Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • J. L. Diesendorf
    • 1
  • S. K. Lowe
    • 1
  • L. Saunders
    • 2
  1. 1.Electricity Commission of New South WalesAustralia
  2. 2.State Electricity Commission of VictoriaAustralia

Personalised recommendations