Advertisement

Theoretical Models for the Arc in the Current Zero Regime

  • B. W. Swanson
Part of the Earlier Brown Boveri Symposia book series (EBBS)

Summary

This paper describes the current state-of-the-art of nozzle arc modeling. It begins with a discussion of arc turbulence and radiation followed by a review of three arc models that have the most potential for design application. The merits and limitations of each model are discussed and recommendations are made for further model development. The discussion shows the importance of arc turbulence and the practicality of modeling the arc as a circuit element. A comparison of arc models gives insight into the influence of gas properties on arc interruption and the explanation of observed arc phenomena. The potential for design application is demonstrated by analyzing the effects of normal shock waves on arc interruption to explain the known variation of interrupting ability with nozzle pressure ratio.

Keywords

Mach Number Compression Shock Eddy Diffusivity Circuit Breaker Nozzle Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Cassie, Report No. 102, CIGRE, Paris, France (1939)Google Scholar
  2. 2.
    Mayr, Archiv für Elektrotechnik 37 (1943) 588Google Scholar
  3. 3.
    T. E. Browne, Jr., AIEE Trans., 67 (1948) 141Google Scholar
  4. 4.
    T. E. Browne, Jr., Trans. AIEE, Power App. Syst., No. 40, pp 1508–1517Google Scholar
  5. 5.
    G. Frind, J. A. Rich, IEEE Trans. PAS (1974) 1675Google Scholar
  6. 6.
    T. E. Browne, Jr., Proc. IEEE Summer Power Meeting Paper (1977) No. F 77–626–5Google Scholar
  7. 7.
    L. S. Frost, Proc. IEEE Summer Power Meeting (1977) No. F 77–627–3Google Scholar
  8. 8.
    T. Cebeci and A. M. 0. Smith, Analysis of Turbulent Boundary Layers, Academic Press (1974)Google Scholar
  9. 9.
    D. E. Abbott, J. D. A. Walker, R. E. York, 4th Int. Conf. Num. Meth. Fluid Dynamics, June (1974), Boulder, Colo.Google Scholar
  10. 10.
    L. Niemeyer and K. Ragaller, Z. Naturforsch. 28a (1973) 1281Google Scholar
  11. 11.
    S. Pai, Fluid Dynamics of Jets, Van Nostrand (1954)Google Scholar
  12. 12.
    H. Schlichting, Boundary Layer Theory, McGraw-Hill (1960)Google Scholar
  13. 13.
    W. Hermann, U. Kogelschatz, L. Niemeyer, K. Ragaller, and E. Schade, J. Phys. D: Appl. Phys. 7 (1974) 1703CrossRefGoogle Scholar
  14. 14.
    B. W. Swanson and R. M. Roidt, Proc. IEEE 59 (1971) 493CrossRefGoogle Scholar
  15. 15.
    D. T. Tuma, J. J. Lowke, J. Appl. Phys. 46 (1975) 3361CrossRefGoogle Scholar
  16. 16.
    R. W. Liebermann and J. J. Lowke, J. Quant. Spectr. Rad. Transfer 16 (1976) 253CrossRefGoogle Scholar
  17. 17.
    W. Hermann and K. Ragaller, IEEE Trans. PAS 96 (1977) 1546Google Scholar
  18. 18.
    W. Hermann, U. Kogelschatz, K. Ragaller and E. Schade, J. Phys. D: Appl. Phys. 7 (1974) 607CrossRefGoogle Scholar
  19. 19.
    J. J. Lowke and H. C. Ludwig, J. Appl. Phys. 46 (1975) 3352CrossRefGoogle Scholar
  20. 20.
    F. R. El–Akkari and D. T. Tuma (1977) Proc. IEEE Winter Power Meeting Paper No. F 77–126–6 21. B. W. Swanson, IEEE Trans. PAS 96 (1977) 1697Google Scholar
  21. 21.
    B. W. Swanson, IEEE Trans. PAS 96 (1977) 1967Google Scholar
  22. 22.
    R. E. Kinsinger and H. 0. Noeske, EPRI Symposium on Fault Current Limiters, State University of New York at Buffalo, Sept. (1976).Google Scholar
  23. 23.
    L. C. Campbell, J. F. Perkins and J. L. Dallachy, Gas Discharges IEE Conference Publication No. 143 (1976) 44Google Scholar
  24. 24.
    A. H. Shapiro, The Dynamics and Thermodynamics of Compressible Fluid Flow, Vol. I, page 135, Ronald Press (1953)Google Scholar
  25. 25.
    H. T. Nagamatsu, R. E. Sheer, Jr. and E. C. Bigelow, Proc. IEEE Winter Power Meeting (1974) Paper No. C 74–184–8Google Scholar
  26. 1.
    B. W. Swanson, this volumeGoogle Scholar
  27. 2.
    H. Schlichting, Boundary Layer Theory, McGraw Hill, New York (1960)zbMATHGoogle Scholar
  28. 3.
    D. T. Tuma, J. Appl. Phys. 46 (1975) 3361CrossRefGoogle Scholar
  29. 4.
    G. R. Jones, this volumeGoogle Scholar
  30. 5.
    D. W. Branston and J. Mentel, 13th Int. Conf. Phen. Ionized Gases, Berlin 1977 6. EPRI Report EL-284 (1977) 2Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • B. W. Swanson
    • 1
  1. 1.Westinghouse Research and Development CenterPittsburghUSA

Personalised recommendations