Experimental Investigation of Limiting Curves for Current Interruption of Gas Blast Breakers

  • G. Frind
Part of the Earlier Brown Boveri Symposia book series (EBBS)


This contribution reviews recent measurements of initial or thermal recovery speed of gas blast interrupters and addresses thus a problem which is critically important for transmission line circuit breakers (short line fault, itrv).

Most measurements were made on gas blast interrupter models of reduced size and with frequencies of the power current significantly higher than 60 Hz. Theoretical arguments and some experimental evidence are presented in support of such a model testing procedure.

Rate of rise of recovery voltage was investigated in its dependence on several important design and circuit parameters: the rate of fall of current dI/dt before current zero, which is representative of the current level, the kind of gas used, the gas pressure and to some extent the electrode nozzle geometry. The variable found to be affecting rrry most sensitively is dI/dt, especially for SF6 at moderate currents below 30 kA. Also different gases, such as SF6, CF4, N2, etc. show great differences in recovery speed. The dependence of rrry on pressure is linear or somewhat steeper. These results agree in general well with predictions of theory. There are, to be sure, still some discrepancies between the experimenters and also between theory and experiment. It is suggested that future experiments with increased attention to both the detailed structure of the flow field and to the wave shapes of current and voltage very close to current zero (microstructure) will assist in resolving these uncertainties.


Pressure Ratio Circuit Breaker Circuit Parameter Nozzle Throat Upstream Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Kopainsky, paper in this volumeGoogle Scholar
  2. 2.
    M. B. Humphries, paper in this volumeGoogle Scholar
  3. 3.
    M. Dubanton, paper in this volumeGoogle Scholar
  4. 4.
    H. Nishikawa, A. Kobayashi, T. Okazaki and S. Yamashita, IEEE Trans. PAS 95 (1976) 1834Google Scholar
  5. 5.
    G. Frind and J. A. Rich, IEEE Trans. PAS 93 (1974) 1675Google Scholar
  6. 6.
    T. E. Browne, Jr., Discussion of Rf. 5 and Practical Modeling of the Circuit Breaker Arc as a Short Line Fault Interrupter, IEEE Trans. paper F-77626–5, Mexico City, Mexico, July 17–22, 1977Google Scholar
  7. 7.
    J. C. Henry, J. Passaquin and E. Thuries, ‘Improved Performance of Gas-Blast Circuit Breakers’, CIGRE Report No. 13–09 (1972)Google Scholar
  8. 8.
    B. W. Swanson, R. M. Roidt and T. E. Browne, Jr., IEEE Trans. PAS 90 (1971) 1094CrossRefGoogle Scholar
  9. 9.
    W. Hermann and K. Ragaller, IEEE Trans. PAS 96 (1977) 1546Google Scholar
  10. 10.
    Fathi R. ElAkkari and David T. Tuma, ‘Simulation of Transient and Zero Current Behaviour of Arcs Stabilized by Forced Convection’, IEEE Trans. Paper F 77 126–6, New York, N.Y., Jan. 30-Feb. 4, 1977Google Scholar
  11. 11.
    Richard R. Kinsinger, IEEE Trans. PAS 93 (1974) 1143Google Scholar
  12. 12.
    G. Frind, R. E. Kinsinger, R. D. Miller, H. T. Nagamatsu and H. O. Noeske, ‘Fundamental Investigations of Arc Interruption in Gas Flows’, EPRI Final Report EL-284 (January 1977). Also: G. Frind, R. E. Kinsinger and R. D. Miller, ’Power Frequency Scaling and Electrode Vapor Effects in Gas Blast Interrupters’, to be published: IEEE Trans. on Plasma ScienceGoogle Scholar
  13. 13.
    J. Slepian, AIEE Transact. 60 (1941) 162Google Scholar
  14. 14.
    L. S. Frost, ‘Dynamic Analysis of Short-Line Fault Tests for Accurate Circuit Breaker Performance Specification’, IEEE Trans. Paper F-77 627–3, Mexico City, Mexico, July 17–22, 1977Google Scholar
  15. 15.
    J. F. Perkins and L. S. Frost, IEEE Trans. PAS 92 (1973) 961CrossRefGoogle Scholar
  16. 16.
    R. D. Garzon, IEEE Trans. PAS 95 (1976) 1681CrossRefzbMATHGoogle Scholar
  17. 17.
    D. Birthwhistle, G. E. Gardner, B. Jones and R. J. Urwin, Proc. IEE 120 (1973) 994Google Scholar
  18. 18.
    D. R. Airey, G. E. Gardner and R. J. Urwin, ‘Development of SF6 Arc Interrupters’, 11th University Power Engineering Conference, Portsmouth, England (1976)Google Scholar
  19. 19.
    T. Morita, M. Iwashita and Y. Nitta, ‘A Theoretical Analysis of Dynamic Arcs and Test Results of Model Synchronous Air Blast Circuit Breakers’, IEEE Trans. Paper F-77 703–2, Mexico’City, Mexico, July 17–22, 1977Google Scholar
  20. 20.
    H. 0. Noeske, Ref. 12 of this paper, Section IIIGoogle Scholar
  21. 21.
    A. Eidinger and M. Sanders, Brown Boveri Review 60 (1973) 173Google Scholar
  22. 22.
    R. B. Shores, J. W. Beatty, H. T. Seeley and W. R. Wilson, AIEE Transact. Pow. App. Syst. Part III 78 (1959) 673Google Scholar
  23. 23.
    M. Hudis, ‘Arc Recovery Measurements in Sonic Fluorocarbon Gas Arcs’, IEEE Conf. Paper C 74–090–7, New York, N.Y., Jan. 1974Google Scholar
  24. 24.
    R. E. Kiesinger and H. O. Noeske, ‘Relative Arc Thermal Recovery Speeds in Different Gases’, 4th Intern. Conf. on Gas Discharges, Swansea, U.K., 7–10 Sept. 1976, IEE Conf. Publ. 143, pp 2428Google Scholar
  25. 25.
    R. D. Garzon, IEEE Trans. PAS 95 (1976) 140CrossRefGoogle Scholar
  26. 26.
    D. M. Grant, J. F. Perkins, L. C. Campbell, 0. E. Ibrahim and 0. Farish, ‘Comparative Interruption Studies of Gas Blasted Arcs in SF,-He Mixtures’, Proc. 4th Int. Conf. Gas Discharges, Swansea, U.K., 7–10 Sept. i976, IEE Conf. Publ. 143Google Scholar
  27. 27.
    R. E. Kinsinger and H. 0. Noeske, ‘Arc Thermal Recovery in Different Gases’, Symposium Proceedings, New Concepts in Fault Current Limiters and Power Circuit Breakers, EPRI Report EL-276-SR (April 1977)Google Scholar
  28. 28.
    J. F. Perkins and L. S. Frost ‘Current Interruption Properties of Gas Blasted Air and SF Arcs’, IEEE Conf. Paper C 72–530–4, San Francisco, Cal. (July, 1972 )Google Scholar
  29. 29.
    J. Kopeliowitsch, Bulletin SEV 23 (1932) 565 (In German)Google Scholar
  30. 30.
    H. Kopplin, K. P. Rolff and K. Zückler, Proc. IEEE 59 (1971) 518CrossRefGoogle Scholar
  31. 31.
    Z. Vostracky, ‘Arc Characteristics of Air Blast Circuit Breakers’, Third Int. Conf. on Gas Discharges, London, England (1974)Google Scholar
  32. 32.
    H. T. Nagamatsu, R. E. Sheer and R. C. Bigelow, ‘Flow Properties of Air and SF6 in Supersonic Circuit Breaker Nozzles’, IEEE Conf. Paper C 74 184–8 (1974)Google Scholar
  33. 33.
    W. Hermann, U. Kogelschatz, L. Niemeyer, K. Ragaller and E. Schade, IEEE Trans. PAS 95 (1976) 1165Google Scholar
  34. 34.
    L. C. Campbell, J. F. Perkins and J. L. Dallachy, ‘Effect of Nozzle Pressure Ratio on SF Arc Interruption’, Proc. 4th Int. Conf. on Gas Discharges (Swansea), IEE Conf.t’ublication 143 (Sept. 1974)Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • G. Frind
    • 1
  1. 1.General Electric Corporate Research and DevelopmentSchenectadyUSA

Personalised recommendations