Radiative Energy Transfer in Circuit Breaker Arcs

  • J. J. Lowke
Part of the Earlier Brown Boveri Symposia book series (EBBS)


Computer studies have revealed that in high-current gast-blast arcs, energy losses at the arc centre are dominated by the radiation losses so that the arc is approximately isothermal. However, most of this radiation is in the far ultra violet region of the spectrum and is re-absorbed in the outer cold region of the arc. Thus, the electrical energy is largely expended in producing arc plasma rather than lost as radiation. Formulae which result for arc diameter as a function of current are in reasonable agreement with experiment. The model for radiation transfer provides a mathematical foundation for the Cassie arc model that for high-current gas-blast arcs the arc diameter is approximately proportional to the square root of the current and arc voltage and temperature are largely independent of current.

Radiation processes are also of primary importance in determining the onset of dielectric breakdown. Recent theoretical investigations have verified that in the breakdown process a conducting channel is propagated by space charge and radiation effects of exp(αd) ~ 108 where α is Townsends ionization coefficient and d is the transit distance of an avalanche. Furthermore, absorption of radiation from the arc before current zero will produce an outer mantel of hot gas which will not rapidly cool by conduction because of its large radius. Because α/n increases rapidly with E/n, breakdown voltages are significantly reduced by any warm gas remaining in the inter electrode region after current zero; n is gas number density, E the electric field.


Ultra Violet Energy Balance Equation Circuit Breaker Radiative Transfer Equation Continuum Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. H. Sampson, Radiative contributions to energy and momentum transport in a gas, p. 25, Interscience, New York (1965)Google Scholar
  2. 2.
    J. B. Shumaker, JQSRT 14 (1974) 19CrossRefGoogle Scholar
  3. 3.
    L. H. Aller, Astrophysics, p. 223, Ronald Press, New York (1963)Google Scholar
  4. 4.
    H. R. Griem, Plasma Spectroscopy, McGraw Hill, New York, 1964Google Scholar
  5. 5.
    A. Burgess and M. J. Seaton, Mon. Not. Roy. Astr. Soc. 120 (1960) 121MathSciNetzbMATHGoogle Scholar
  6. 6.
    G. Peach, Memoirs R. Astron. Soc. 71 (1967) 13Google Scholar
  7. 7.
    J. J. Lowke and R. W. Liebermann, J. Appl. Phys. 42 (1971) 3532CrossRefGoogle Scholar
  8. 8.
    K. H. Wilson and W. E. Nicolet, JQSRT 7 (1967) 891CrossRefGoogle Scholar
  9. 9.
    J. J. Lowke and R. W. Liebermann, J. Appl. Phys. 43 (1971) 1991Google Scholar
  10. 10.
    H. Popp, Z. Naturforsch. 22a (1967) 254Google Scholar
  11. 11.
    H. Popp, Physics Reports 16 (1975) 169CrossRefGoogle Scholar
  12. 12.
    G. Bold, Z. Phys. 154 (1959) 319 and 154 (1959) 330Google Scholar
  13. 13.
    J. C. Morris, R. U. Krey and R. L. Garrison, Phys. Rev. 180 (1969) 167CrossRefGoogle Scholar
  14. 14.
    W. D. Barfield, JQSRT 17 (1977) 471CrossRefGoogle Scholar
  15. 15.
    W. Hermann and E. Schade, JQSRT 12 (1972) 1257CrossRefGoogle Scholar
  16. 16.
    R. W. Liebermann and J. J. Lowke, JQSRT 16 (1976) 253CrossRefGoogle Scholar
  17. 17.
    W. L. Wiese, M. W. Smith and B. M. Miles, Atomic Transition Probabilities, NBS NSRDS-NBS, 22, Vol. 2 and NSRDS-NBS, 4, Vol. 1Google Scholar
  18. 18.
    H. R. Griem, Phys. Rev. 128 (1962) 515CrossRefGoogle Scholar
  19. 19.
    L. C. Biedenharn, J. M. Blatt and M. E. Rose, Rev. Mod. Phys. 24 (1952) 249CrossRefzbMATHGoogle Scholar
  20. 20.
    B. L. Hunt and M. Sibulkin, JQSRT 7 (1967) 761CrossRefGoogle Scholar
  21. 21.
    H. R. Griem, Phys. Rev. 165 (1968) 258CrossRefGoogle Scholar
  22. 22.
    C. H. Church, R. G. Schlecht, I. Liberman and B. W. Swanson, AIAA 4 (1966) 1947CrossRefGoogle Scholar
  23. 23.
    J. J. Lowke, JQSRT 9 (1969) 839CrossRefGoogle Scholar
  24. 24.
    R. D. Richtmyer and K. W. Morton, Difference methods for initial valve problems, Interscience, New York (1967)Google Scholar
  25. 25.
    J. J. Lowke and E. R. Capriott, JQSRT 9 (1969) 207CrossRefGoogle Scholar
  26. 26.
    W. Finkelnburg and H. Maecker, Handbuch der Physik, Vol. 22, p. 254 (Edited by S. Flügge ), Springer Verlag, Berlin (1956)Google Scholar
  27. 27.
    R. Viskanta, Advances in Heat Transfer, Vol. 3, p. 175, Edited by T. F. Irvine and J. P. Hartnett, Academic Press, New York, 1966Google Scholar
  28. 28.
    A. Schuster, Astrophys. J. 21 (1905) 1CrossRefGoogle Scholar
  29. 29.
    S. C. Traugott and K. C. Wang, Int. J. Heat Mass Transfer 7 (1964) 269CrossRefGoogle Scholar
  30. 30.
    C. F. Curtiss and J. 0. Hirschfelder, Proc. Natn. Acad. Sci. USA 38 (1952) 235MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    M. F. Hoyaux, Arc Physics, Springer Verlag, New York (1968)CrossRefGoogle Scholar
  32. 32.
    H. W. Emmons, Phys. Fluids 10 (1967) 1125Google Scholar
  33. 33.
    J. J. Lowke, JQSRT 14 (1974) 111CrossRefGoogle Scholar
  34. 34.
    W. Hermann, U. Kogelschatz, L. Niemeyer, K. Ragaller and E. Schade, J. Phys. D 7 (1974) 1703, also IEEE Trans. PAS 95 (1976) 1165Google Scholar
  35. 35.
    D. T. Tuma and J. J. Lowke, J. Appl. Phys. 46 (1975) 3361, also J. J. Lowke and H. C. Ludwig, J. Appl. Phys 46 (1975) 3352Google Scholar
  36. 36.
    W. Hermann, U. Kogelschatz, K. Ragaller and E. Schade, J. Phys. D 7 (1974) 607CrossRefGoogle Scholar
  37. 37.
    J. J. Lowke, J. Appl. Phys. 41 (1970) 2588Google Scholar
  38. 38.
    D. R. Airey, R. E. Kinsinger, P. H. Richards and J. D. Swift, IEEE Trans. PAS 95 (1976) 1CrossRefGoogle Scholar
  39. 39.
    P. Kovitya, J. J. Lowke and A. D. Stokes, Proc. 13th Intern. Conf. Phenomena in Ionized Gases, Berlin, 1977, p. 515Google Scholar
  40. 40.
    K. A. Ernst, J. G. Kopainsky and H. Maecker , IEEE Trans. Plasma Science PS 1 (1973) 4 and J. M. Yos, AVCO Technical Memorandum RAD-TM-63–7Google Scholar
  41. 41.
    E. D. Nostrand an A. B. F. Duncan, J. Amer. Chem. Soc. 76 (1954) 3377Google Scholar
  42. 42.
    J. A. Simpson, C. E. Kuyatt and S. R. Mielczarek, J. Chem. Phys. 44 (1966) 4403CrossRefGoogle Scholar
  43. 43.
    K. Codling, J. Chem. Phys. 44 (1966) 4401CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • J. J. Lowke
    • 1
  1. 1.School of Electrical EngineeringUniversity of SydneyAustralia

Personalised recommendations