Biological and Medical Applications of Light Scattering Spectroscopy

  • George B. Benedek
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 23)


If a solution of macromolecules is illuminated by a monochromatic beam of light, then the temporal fluctuations in the scattered light intensity contain detailed information on the Brownian movement and the flow velocity of the macromolecules. From the Brownian movement one can deduce the diffusion coefficient, or the distribution of diffusion coefficients, and hence, the size and degree of aggregation of the macromolecules in solution. If the particles in solution are flowing with a single velocity, or a distribution of velocities, the Doppler shifts in the frequency of the scattered light contains detailed information on the velocity distribution of the flowing molecules.


Brownian Movement Bile Salt Doppler Shift Mixed Micelle Sodium Tauro Cholate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Z. Cummins and H. L. Swinney, Prog in Optics 8, 133 1970.CrossRefGoogle Scholar
  2. 2.
    G. B. Benedek, “Optical Mixing Spectroscopy with Applications to Problems in Physics, Chemistry, Biology and Engineering” in the Jubilee Volume in honor of Alfred Kastler, Polarization, Matter and Radiation, published by Presses Universitaire de Paris (1969), pp. 49-84.Google Scholar
  3. 3.
    S. B. Dubin, J. H. Lunacek and G. B. Benedek, Proc Nat’l Acad Sci 57, 1164–1171 1967.ADSCrossRefGoogle Scholar
  4. 4.
    N. Clark, J. H. Lunacek and G. B. Benedek, Amer J Phys 38, 575–585 (1970).ADSCrossRefGoogle Scholar
  5. P. N. Pusey in Photon Correlation and Light Beating Spectroscopy, edited by H. Z. Cummins and E. R. Pike, Plenum Press, New York (1974).Google Scholar
  6. G. D. Phillies, J Chem Phys 60, 976 1974.ADSCrossRefGoogle Scholar
  7. G. D. Phillies, Ph.D. Thesis, M. I. T. 1973, unpublished.Google Scholar
  8. 5.
    B. Chu, J Chem Educ 45 1968; and B. Chu, Ann Rev Phys Chem. 21, 145 1970.ADSCrossRefGoogle Scholar
  9. 6.
    R. Pecora, Ann. Rev. Biophys. Bioeng. 1, 257 1972.CrossRefGoogle Scholar
  10. 7.
    M. J. French, J. C. Angus and A. G. Walton, Science 163, 345 1969.ADSCrossRefGoogle Scholar
  11. 8.
    N. C. Ford, Jr., R. Gahler and F. E. Karasz in Polymer Weight Methods, edited by M. Ezrin, published by Amer. Chem. Soc. (1973).Google Scholar
  12. 9.
    A. M. Jamieson and A. R. Maret, Chem Soc Rev U.K. 2, 325 1973.CrossRefGoogle Scholar
  13. 10.
    B. Chu in Laser Light Scattering, published by Academic Press, New York (1974).Google Scholar
  14. 11.
    S. B. Dubin in Methods in Enzymology, edited by Hirs and Timashiff, Vol. XXVI, C. Enzyme Structure II, published by Academic Press, New York (1972).Google Scholar
  15. 12.
    S. Fujime, Adv in Biophys 3 1 1972.Google Scholar
  16. 13.
    S. B. Dubin, N. Clark and G. Benedek, J Chem Phys 54, 5158 1973.ADSCrossRefGoogle Scholar
  17. 14.
    D. W. Schaefer, G. Benedek, P. Schofield and E. Bradford, J Chem Phys 55, 3884 1971.ADSCrossRefGoogle Scholar
  18. 15.
    S. B. Dubin, F. C. Bancroft, D. Friefelder and G. Benedek, J Mol Biol 54, 547 1970.CrossRefGoogle Scholar
  19. 16.
    S. B. Dubin, G. Feher and G. Benedek, Biochem. 12, 714 1973.CrossRefGoogle Scholar
  20. 17.
    L. O. Hocker, J. Krupp, J. Vournakis and G. Benedek, Biopolymers 12, 1677 1973.CrossRefGoogle Scholar
  21. 18.
    P. Berge, B. Volochine et al., C. Rendus Acad Sci Paris 265, D889 1967.Google Scholar
  22. 19.
    R. Combescot, J Physique 31, 767 1970.CrossRefGoogle Scholar
  23. 20.
    R. Nossal and S. H. Chen, Journal de Physique Colloque Cl, Supplement 2–3, Tome 33, 172 1972.Google Scholar
  24. 21.
    D. W. Schaefer and B. Berne, to be published in Biophysical Journal.Google Scholar
  25. 22.
    F. D. Carlson and T. J. Herbert, Journal de Physique Colloque Cl, Supplement 2–3, Tome 33, 158 1972.Google Scholar
  26. 23.
    N. Mazer, M. Carey and G. Benedek, J Phys Chem. 80, 1075 1976.CrossRefGoogle Scholar
  27. 24.
    D. McQueen and J. Hermans, J Coll Interface Sci. 39, 389 1972.CrossRefGoogle Scholar
  28. 25.
    T. Tanaka and G. Benedek, Invest Ophthal. 14, 449 1975.Google Scholar
  29. 26.
    R. Cohen, J. Jedziniak and G. Benedek, Proc Roy Soc, London A345, 73 1975.ADSGoogle Scholar
  30. 27.
    T. Tanaka, C. Riva and Y. Ben Sira, Science 186, 830 1975.ADSCrossRefGoogle Scholar
  31. 28.
    T. Tanaka and G. B. Benedek, Applied Optics 14, 189 1975.ADSGoogle Scholar
  32. 29.
    B. R. Ware, Adv. in Colloid and Interface Sci. 4, 1 1974.CrossRefGoogle Scholar
  33. 30.
    E. E. Uzgiris, Phys Rev. A8, 2662 1973.ADSGoogle Scholar
  34. 31.
    R. Mohan, R. Steiner and R. Kaufman, Annals of Biochem. (to be published).Google Scholar
  35. 32.
    R. J. Cohen, J. A. Jedziniak and G. B. Benedek, Proc, Roy Soc London Ser. A345, 73–88 1975.ADSCrossRefGoogle Scholar
  36. 33.
    T. Tanaka and G. B. Benedek, Invest Ophth. 14, 449 1975.Google Scholar
  37. 34.
    N. A. Mazer, G. B. Benedek and M. C. Carey, J Phys Chem. 80, 1075 1976.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • George B. Benedek
    • 1
  1. 1.Department of Physics, and Center for Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations