Light Scattering by Liquid Interfaces

  • D Langevin
  • J Meunier
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 23)

Abstract

In 1908, V. Smoluchowski1 made the remark that the free surface of a liquid is constantly distorted by thermal motion, and should therefore present a certain roughness. In 1913, L. Mandelstam2 derived the mean square amplitude of the fluctuations with classical thermodynamic formulas. Using a theory of Rayleigh3 for diffuse reflection by a rough surface, he then calculated the intensity of light scattered in the plane of incidence.

Keywords

Surface Tension Wave Vector Liquid Interface Scattered Intensity Soap Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M Von Smoluchowski. Ann Physik 25, 225, 1908Google Scholar
  2. 2.
    L Mandelstam. Ann Physik 41, 609, 1913ADSMATHCrossRefGoogle Scholar
  3. 3.
    J W Rayleigh. Scientific Papers A. 322, 388, 1907Google Scholar
  4. 4.
    A A Andronov and M A Leontovich. Z Phys. 38, 485, 1926ADSCrossRefGoogle Scholar
  5. A A Andronov, Collected works, Izd. Akad Nauk SSSR,1956 R Gans. Ann Physik 79, 204, 1926Google Scholar
  6. 5.
    C V Raman and L A Ramdas. Proc Roy Soc. A108, 561, 1925ADSGoogle Scholar
  7. C V Raman and L A Ramdas. Proc Roy Soc. A109, 150, 272, 1925ADSGoogle Scholar
  8. 6.
    S Jagannathan. Proc Indian Acad Sci. A1, 115, 1934Google Scholar
  9. F Barikhanskaya. J Exptl Theoret Phys USSR 7, 51, 1937Google Scholar
  10. P S Hariharan. Proc Indian Acad Sci. A16, 290, 1942Google Scholar
  11. 7.
    L I Komarov and I Z Fisher. Sov Phys J.E.T.P. 16, 1358, 1963ADSGoogle Scholar
  12. R Pecora. J Chem Phys. 40, 1604, 1963ADSCrossRefGoogle Scholar
  13. 8.
    M Papoular. J de Phys. 29, 81, 1968CrossRefGoogle Scholar
  14. 9.
    M A Bouchiat, J Meunier, J Brossel. CRAS, 266B, 255, 1968Google Scholar
  15. M A Bouchiat, J Meunier. CRAS, 266B, 301, 1968Google Scholar
  16. M A Bouchiat, J Meunier. in Polarization, Matter and Radiation, Presses Universitaires, Paris, 1969Google Scholar
  17. 10.
    R H Katyl and U Ingard. Phys Rev Lett. 20, 248, 1968ADSCrossRefGoogle Scholar
  18. 11.
    J Meunier, D Cruchon, M A Bouchiat. CRAS, 268B, 92, 422, 1969Google Scholar
  19. 12.
    MA Bouchiat, J Meunier. J de Phys. 32, 561, 1971CrossRefGoogle Scholar
  20. 13.
    M Born, E Wolf. Principles of Optics, Pergamon Press, 2–4, 1959.Google Scholar
  21. 14.
    D Langevin. Thesis, Paris, chap IV 1974.Google Scholar
  22. M A Bouchiat, D Langevin, to be published.Google Scholar
  23. 15.
    L D Landau, G Placzek. Physk z Sowjetunion, 5, 172, 1934Google Scholar
  24. 16.
    J C Herpin, J Meunier. J de Phys 35, 847, 1974.CrossRefGoogle Scholar
  25. NB: In eq (1), the expression of D(S) must be corrected: in the S2 term m′(m−1) and m(m′−1) should be replaced by m′(m+1) and m(m′+l).Google Scholar
  26. 17.
    D Langevin, M A Bouchiat. J de Phys. 33, 101, 1972CrossRefGoogle Scholar
  27. 18.
    D Langevin, M A Bouchiat. CRAS, 272B, 1422, 1971Google Scholar
  28. 19.
    M A Bouchiat, D Langevin. CRAS, 272B, 1357, 1971Google Scholar
  29. 20.
    J Meunier. Thesis, Paris, chapt III, 1971.Google Scholar
  30. 21.
    D Langevin, J Meunier, M.A. Bouchiat. Opt Comm. 6, 427, 1972ADSCrossRefGoogle Scholar
  31. 22.
    J S Huang, W W Webb. Phys Rev Lett. 23, 160, 1969ADSCrossRefGoogle Scholar
  32. 23.
    J Meunier. J de Phys. 30, 933, 1969CrossRefGoogle Scholar
  33. M A Bouchiat, J Meunier. Phys Rev Lett. 23, 752, 1969ADSCrossRefGoogle Scholar
  34. M A Bouchiat, J Meunier. J de Phys. 33, C1–141, 1972CrossRefGoogle Scholar
  35. 24.
    J Zollweg, G Hawkins, G Benedek. Phys Rev Lett. 27, 1182, 1971ADSCrossRefGoogle Scholar
  36. 25.
    E S Wu, W W Webb. J de Phys. 33, C1–149, Phys Rev. A8, 2070, 1973Google Scholar
  37. 26.
    D Langevin, J. de Phys. 33, 249, 1972CrossRefGoogle Scholar
  38. D Langevin, M A Bouchiat. J de Phys. 33, C1–77, 1972CrossRefGoogle Scholar
  39. D Langevin. J de Phys. 36, 745, 1975CrossRefGoogle Scholar
  40. D Langevin. J de Phys. 37, 901, 1976CrossRefGoogle Scholar
  41. 27.
    D Langevin, M A Bouchiat. Mol Cryst Liq Cryst. 22, 317, 1973CrossRefGoogle Scholar
  42. D Langevin, M A Bouchiat. CRAS, 277B, 731, 1973Google Scholar
  43. 28.
    P G De Gennes. Mol Cryst Liq Cryst. 12, 193, 1971CrossRefGoogle Scholar
  44. 29.
    L Hammarlund, L Ilver, I Lundstrom, D McQueen. J.C.S. Faraday I, 69, 1023, 1973CrossRefGoogle Scholar
  45. I Lundstrom, D McQueen, J.C.S. Faraday I, 70, 2351, 1974CrossRefGoogle Scholar
  46. 30.
    B H Zimm. J Chem Phys. 24, 269, 1956MathSciNetADSCrossRefGoogle Scholar
  47. 31.
    A Vrij. J Colloid Sci. 19, 1, 1964CrossRefGoogle Scholar
  48. Adv in Colloid Interf. Sci. 2, 39, 1968.Google Scholar
  49. 32.
    H M Fijnaut, A Vrij. Nature Phys Sci. 246, 118, 1973ADSGoogle Scholar
  50. 33.
    N A Clark. Paper presented at the Light Scattering Conf., Verbier 1974.Google Scholar
  51. 34.
    E Grabowski, J A Cowen. Submitted to Biophysical Journal.Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • D Langevin
    • 1
  • J Meunier
    • 1
  1. 1.Laboratoire de Spectroscopie Hertzienne de l’E.N.S.PARIS CEDEX 05France

Personalised recommendations