Dynamics of Charged Macromolecules in Solution

  • Bruce J. Berne
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 23)


Light scattering provides a sensitive tool for the study of solutions of charged macromolecules. This chapter deals with three separate problems involving polyelectrolyte solutions. The first problem is to interpret the spectrum of solutions in which the coulombic interactions between highly charged spherical polyions leads to long range spatial and dynamic correlations. The second problem is to provide a general irreversible thermodynamic framework for the description of electrophoresis experiments, and the third problem is to show how number fluctuation experiments can be used to study the correlation lengths as well as electrophoresis in charged systems. All of these problems are connected.


Correlation Function Correlation Length Concentration Fluctuation Charged Sphere Solvent Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.N. Pusey, D.E. Koppel, D. W. Schaefer, R. D. Camerini-Otero, and S. H. Koenig, Biochemistry 13, 952 1974.CrossRefGoogle Scholar
  2. 2.
    D. W. Schaefer and B.J. Berne, Phys Rev Lett. 19, 1023 1974.Google Scholar
  3. 3.
    J. C. Brown, P.N. Pusey, J.W. Goodwin and R.H. Ottewill, J Phys A 8, 664 1975.ADSGoogle Scholar
  4. 4.
    D.W. Schaefer and B.J. Ackerson, Phys Rev Lett 35, 1448 1975.ADSCrossRefGoogle Scholar
  5. 5.
    B.V. Derjaguin and L. Landau, Acta Physicochem 14, 633 1941.Google Scholar
  6. 6.
    E. J. W. Verwey and J.Th.G. Overbeek, The Theory of Lyophobic Colloids (Elsevier, Amsterdam, 1941).Google Scholar
  7. 7.
    G. M. Beil, S. Levine, and L. N. McCarney, J Coll Int Sci, 33 335 1970.CrossRefGoogle Scholar
  8. 8.
    S.L. Brenner and V.A. Parsegian, Biophys. J., 14, 327 1974.CrossRefGoogle Scholar
  9. 9.
    S.L. Brenner, Preprint 1975.Google Scholar
  10. 10.
    W.G. Hoover, and F.H. Ree, J Chem Phys. 49, 3609 1968.ADSCrossRefGoogle Scholar
  11. 11.
    H.L. Swinney, Critical Phenomena in Fluids, in Photon Correlation and Light Beating Spectroscopy eds.H. Z. Cummins and E. R. Pike Plenum, 1974.Google Scholar
  12. 12.
    K. Kawasaki and S.M. Lo, Phys Rev Lett. 29, 48 1972.ADSCrossRefGoogle Scholar
  13. 13.
    R. A. Ferrell, Phys Rev Lett. 24, 1169 1970.ADSCrossRefGoogle Scholar
  14. 14.
    R. A. Ferrell in Dynamical Aspects of Critical Phenomena ed. by J.R. Budnick and M.P. Lavatra (Gordon and Breach, New York, 1972)Google Scholar
  15. 15.
    P.G. de Gennes, Physica 25, 825 1959.ADSCrossRefGoogle Scholar
  16. 16.
    P.N. Pusey, Private communication.Google Scholar
  17. 17.
    P.N. Pusey, J. Phys A., Math, Gen. 8, 1433 1975 Similar ideas are presented here.ADSCrossRefGoogle Scholar
  18. 18.
    For a recent didactic presentation of the Zwanzig-Mori formalism see B.J. Berne and R. Pecora Dynamic Light Scattering, John Wiley, New York, 1976.Google Scholar
  19. 19.
    I. N. Sneddon, The Use of Integral Tranforms, McGraw Hill, New York 1972.Google Scholar
  20. 20.
    K. Kawasaki, Ann Phys 61, 1 1970.ADSCrossRefGoogle Scholar
  21. 21.
    For a good didactic review see R. Zwanzig, Ann Rev Phys Chem. 16, 67 1965.ADSCrossRefGoogle Scholar
  22. 22.
    T. Keyes, Principles of Mode-Mode Coupling Theory, in Modern Theoretical Chemisty Vol. VI, E.B.J. Berne, Plenum, New York in press.Google Scholar
  23. 23.
    L. Onsager, Phys Rev 37, 405; 38, 2265 1931.ADSCrossRefGoogle Scholar
  24. 24.
    L. Friedhoff and B.J. Berne, Biopolymers, 15, 21 1976.CrossRefGoogle Scholar
  25. 25.
    A. Katchalsky and P.F. Curran, Non-Equilibrium Thermodynamics, Harvard University Press, 1965.Google Scholar
  26. 26.
    S. R. DeGroot and P. Mazur, Non-Equilibrium Thermodynamics, North Holland, Amsterdam 1962.Google Scholar
  27. 27.
    I. Prigogine, Introduction to Thermodynamics of Irreversible Processes, Wiley, Interscience, New York 1955.Google Scholar
  28. 28.
    L. Friedhoff and B.J. Berne, Manuscript in prep.Google Scholar
  29. 29.
    D. Schaefer and B.J. Berne, Phys Rev Lett. 28, 4775 1972.CrossRefGoogle Scholar
  30. 30.
    D. Schaefer and B.J. Berne, Biophys J. 15, 785, 1975.CrossRefGoogle Scholar
  31. 31.
    S.H. Chen and P. Tartaglia, Opt Commun. 6, 119 1972.ADSCrossRefGoogle Scholar
  32. 32.
    The incoherent scattering is discussed in Dr. Pusey’s lectures, and references cited therein.Google Scholar
  33. 33.
    D. Magde, E. Elson and W.W. Webb Phys Rev Letts. 29, 705 1972.ADSCrossRefGoogle Scholar
  34. 34.
    G. Feher and M. Weissman Proc Natl Acad, Sci. 40, 870 1973.ADSCrossRefGoogle Scholar
  35. 35.
    B.R. Ware and W.H. Flygare Chem Phys Lett. 12, 81 1971.ADSCrossRefGoogle Scholar
  36. 36.
    B.J. Berne and R. Nossal, Biophysic J. 14, 865 1974.ADSCrossRefGoogle Scholar
  37. 37.
    B.J. Berne and J. Gethner, Manuscript in prep. 1976.Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Bruce J. Berne
    • 1
  1. 1.Department of ChemistryColumbia UniversityNew YorkUSA

Personalised recommendations