Square integrable martingales, and structure of the functionals on a Wiener process

  • R. S. Liptser
  • A. N. Shiryayev
Part of the Applications of Mathematics book series (SMAP, volume 5)


Let (Ω, ℱ, P) be a complete probability space, and let F = (ℱ t ), t ≥ 0, be a nondecreasing (right continuous) family of sub-σ-algebras ℱ, each of which is augmented by sets from ℱ having zero P-probability.


Conditional Expectation Continuous Modification Simple Function Wiener Process Diffusion Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and references

  1. [126]
    Meyer P. A., Probabilitiés et Potentiel. Herman, Paris, 1966.Google Scholar
  2. [95]
    Kunita H., Watanabe Sh., On square-integrable martingales. Matematika, Sbornik perevodov inostr. statei, 15: 1 (1971), 66–102.Google Scholar
  3. [18]
    Ventsel A. D., Additive functionals of a multivariate Wiener process. DAN SSSR 130, 1 (1961), 13–16.Google Scholar
  4. [85]
    Clark I. M. C., The representation of functionals of Brownian motion by stochastic integrals. AMS 41, 4 (1970), 1282–1295.Google Scholar
  5. [96]
    Courrège Ph., Intégrales Stochastiques et Martingales de Carré Intégrable. Seminaire Brelot Choquet-Deny. 7-e année (1962/63).Google Scholar
  6. [75]
    Kallianpur G., Striebel C., Stochastic differential equations occurring in the estimation of continuous parameter stochastic processes. Teoria Verojatn. i Primenen. XIV, 4 (1969), 597–622.MathSciNetGoogle Scholar
  7. [51]
    Yershov M. P., Sequential estimation of diffusion processes. Teoria Verojatn. i Primenen. XV, 4 (1970), 705–717.Google Scholar
  8. [156]
    Fujisaki M., Kallianpur G., Kunita H., Stochastic differential equations for the nonlinear filtering problem. Osaka J. Math. 9, 1 (1972), 19–40.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • R. S. Liptser
    • 1
  • A. N. Shiryayev
    • 2
  1. 1.Institute for Problems of Control TheoryMoscowUSSR
  2. 2.Institute of Control SciencesMoscowUSSR

Personalised recommendations