Gene Regulation: Selective Control of DNA Helix Openings

  • John H. Frenster


Gene regulation implies differential activity of DNA molecules within an individual cell. Such differential activity is observed during both gene transcription and gene replication (Frenster, 1966), and is a feature of DNA molecules within both prokaryotes (Chamberlin, 1974) and eukaryotes (Frenster and Herstein, 1973). Because gene replication appears to be secondary to gene transcription (Klevecz and Hsu, 1964; Champoux and McConaughy, 1975), the critical feature of the regulatory event appears to lie in the molecular details of selective gene transcription (Frenster, 1965d; Chamberlin, 1974). Such selectivity involves both the choice of a particular gene locus and the choice of a particular DNA strand on which to effect messenger RNA synthesis (Frenster, 1966).


Strand Separation Acidic Macromolecule Selective Transcription Nuclear Acidic Protein Histone Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aloni, Y., and Locker, H., 1973, Symmetrical in vivo transcription of polyoma DNA and the separation of self-complementary viral and cell RNA, Virology 54: 495–505.PubMedCrossRefGoogle Scholar
  2. Barrett, T., Maryanka, D., Harrlyn, P.H., and Gould, H.J., 1974, Non-histone proteins control gene expression in reconstituted chromatin, Proc. Nat. Acad. Sci. USA 71: 5057–5061.PubMedCrossRefGoogle Scholar
  3. Bekhor, I., Bonner, J., and Dahmus, G.H., 1969, Hybridization of chromosomal RNA to native DNA, Proc. Nat. Acad. Sci. USA 62: 271–277.PubMedCrossRefGoogle Scholar
  4. Bekhor, I., Kung, G.M., and Bonner, J., 1969, Sequence-specific interaction of DNA and chromosomal proteins, J. Mol. Biol. 39: 351–364.PubMedCrossRefGoogle Scholar
  5. Bolund, L., Gahrton, G., Killander, D., Rigler, R., and Wahren, B., 1970, Structural changes in the deoxyribonucleoprotein complex of leukocytes from patients with infectious mononucleosis, Blood 35: 322–332.PubMedGoogle Scholar
  6. Bolund, L., Ringertz, N.R., and Harris, H., 1969, Changes in the cytochemical properties of erythrocyte nuclei reactivated by cell fusion, J. Cell Sci. 4: 71–87.PubMedGoogle Scholar
  7. Bram, S., Butler-Browne, G., Boudy, P., and Ibel, K., 1975, Quartenary structure of chromatin, Proc. Nat. Acad. Sci. USA 72: 1043–1045.PubMedCrossRefGoogle Scholar
  8. Britten, R.J., and Davidson, E.H., 1969, Gene regulation in higher cells: a theory, Science 165: 349–357.PubMedCrossRefGoogle Scholar
  9. Chae, C.B., 1975, Reconstitution of chromatin: mode of reassociation of chromosomal proteins, Biochemistry 14: 900–906.PubMedCrossRefGoogle Scholar
  10. Chamberlin, M.J., 1974, The selectivity of transcription, Annu. Rev. Biochem. 43: 721–775.PubMedCrossRefGoogle Scholar
  11. Champoux, J.J., and McConaughy, B.C., 1975, Priming of superhelical SV40 DNA by E. coli RNA polymerase for in vitro DNA synthesis, Biochemistry 14: 307–316.PubMedCrossRefGoogle Scholar
  12. Chan, H.W., and Wells, R.D., 1974, Structural uniqueness of the lactose operator, Nature 252: 205–209.PubMedCrossRefGoogle Scholar
  13. Chetsanga, C.J., Boyd, V., Peterson, L., and Rushlan, K., 1975, Single-stranded regions in DNA of old mice, Nature 253: 130–131.PubMedCrossRefGoogle Scholar
  14. Dahmus, M.E., and Bonner, J., 1970, Nucleoproteins as regulators of gene function, Fed. Proc. 29: 1255–1260.PubMedGoogle Scholar
  15. Davidson, R.G., Nitowsky, H.M., and Childs, B., 1963, Demonstration of two populations of cells in the human female heterozygous for glucose-6-phosphate dehydrogenase variants, Proc. Nat. Acad. Sci. USA 50: 481–485.PubMedCrossRefGoogle Scholar
  16. Dickson, R.C., Abelson, J., Barnes, W.M., and Reznikoff, W.S., 1975, Genetic regulation: the lac control region, Science 187: 27–35.PubMedCrossRefGoogle Scholar
  17. Doenecke, D., and McCarthy, B.J., 1975, The nature of proteins associated with chromatin, Biochemistry 14: 1373–1378.PubMedCrossRefGoogle Scholar
  18. Eisenstadt, E., Lange, R., and Willecke, K., 1975, Competent Bacillus subtilis synthesize a denatured DNA binding activity, Proc. Nat. Acad. Sci. USA 72: 323–327.PubMedCrossRefGoogle Scholar
  19. Fox, A.S., Duggleby, W.F., Gelbert, W.M., and Yoon, S.B., 1970, DNA-induced transformations in Drosophila: evidence for transmission without integration, Proc. Nat. Acad. Sci. USA 67: 1834–1838.PubMedCrossRefGoogle Scholar
  20. Frenster, J.H., 1965a, Ultrastructural continuity between active and repressed chromatin, Nature 205: 1341–1342.CrossRefGoogle Scholar
  21. Frenster, J.H., 1965b, Nuclear polyanions as de-repressors of synthesis of RNA, Nature 206: 680–683.PubMedCrossRefGoogle Scholar
  22. Frenster, J.H., 1965c, A model of specific de-repression within interphase chromatin, Nature 206: 1269–1270.PubMedCrossRefGoogle Scholar
  23. Frenster, J.H., 1965d, Localized strand separations within DNA during selective transcription, Nature 208: 894–896.PubMedCrossRefGoogle Scholar
  24. Frenster, J.H., 1965e, Correlation of the binding to DNA loops or to DNA helices with the effect on RNA synthesis, Nature 208: 1093–1094.PubMedCrossRefGoogle Scholar
  25. Frenster, J.H., 1966, Control of DNA strand separations during selective transcription and asynchronous replication, Information Exchange Group Number 7, March, 1966, and in “The Cell Nucleus-Metabolism and Radiosensitivity” (H.M. Klouwen, ed.), pp. 27–46, Taylor and Francis Ltd., London.Google Scholar
  26. Frenster, J.H., 1973, Molecular aspects of the integration and de-repression of oncogenic viral genomes, U.S. Atomic Energy Commission, “Third Conference on Embryonic and Fetal Antigens in Cancer, ” Report CONF-731141 (Nov. 4–7, 1973 ), pp. 19–20.Google Scholar
  27. Frenster, J.H., 1975, Model of single-stranded integration of oncogenic viral genomes, Biophys. J. 15: 137a - 138a.CrossRefGoogle Scholar
  28. Frenster, J.H., Allfrey, V.G., and Mirsky, A.E., 1961, In vivo incoration of amino acids into the proteins of isolated nuclear ribosomes, Biochim. Biophys. Acta 47: 130–137.CrossRefGoogle Scholar
  29. Frenster, J.H., Allfrey, V.G., and Mirsky, A.E., 1963, Repressed and active chromatin isolated from interphase lymphocytes, Proc. Nat. Acad. Sci. USA 50: 1026–1032.PubMedCrossRefGoogle Scholar
  30. Frenster, J.H., and Herstein, P.R., 1973, Gene de-repression, New England J. Med. 288: 1224–1229.CrossRefGoogle Scholar
  31. Fresnter, J.H., Nakatsu, S.L., and Masek, M.A., 1974, Ultrastructural probes of DNA templates within human bone marrow and lymph node cells, in “Advances in Cell and Molecular Biology,” (E. DuPraw, ed.), Vol. 3, pp. 1–19, Academic Press, New York.Google Scholar
  32. Gilmour, R.S., and Paul, J., 1969, RNA transcribed from reconstituted nucleoprotein is similar to natural RNA, J. Mol. BioZ. 40: 137–140.CrossRefGoogle Scholar
  33. Gilmour, R.S., and Paul, J., 1970, Role of non-histone components in determining organ specificity of rabbit chromatin, FEBS Lett. 9: 242–245.PubMedCrossRefGoogle Scholar
  34. Gledhill, B.L., Gledhill, M.P., Rigler, R., and Ringertz, N.R., 1966, Changes in deoxyribonucleoprotein during spermiogenesis in the bull, Exp. Cell Res. 41: 652–665.PubMedCrossRefGoogle Scholar
  35. Goldstein, L., 1974, Stable nuclear RNA returns to post-division nuclei following release to the cytoplasm during mitosis, GENE REGULATION 65 Exp. Cell Res. 89: 421–425.PubMedCrossRefGoogle Scholar
  36. Grumbach, M.M., Morishima, A., and Taylor, J.H., 1963, Human sex chromosome abnormalities in relation to DNA replication and heterochromatinization, Proc. Nat. Acad. Sci. USA 49: 581–589.PubMedCrossRefGoogle Scholar
  37. Holmes, D.S., and Bonner, J., 1974a, Interspersion of repetitive and single-copy sequences in nuclear RNA of high molecular weight, Proc. Nat. Acad. Sci. USA 71: 1108–1112.PubMedCrossRefGoogle Scholar
  38. Holmes, D.S., Mayfield, J.E., and Bonner, J., 1974b, Sequence composition of rat ascites chromosomal RNA, Biochemistry 13: 849–855.PubMedCrossRefGoogle Scholar
  39. Huang, A.T., Riddle, M.M., and Koons, L.S., 1975, Some properties of a DNA-unwinding protein unique to lymphocytes from chronic lymphocytic leukemia, Cancer Res. 35: 981–986.PubMedGoogle Scholar
  40. Huang, R.C.C., and Bonner, J., 1962, Histone a suppressor of chromosomal RNA synthesis, Proc. Nat. Acad. Sci. USA 48: 1216–1222.PubMedCrossRefGoogle Scholar
  41. Huang, R.C.C., and Huang, P.C., 1969, Effect of protein-bound RNA associated with chick embryo chromatin on template specificity of chromatin, J. Mol. Biol. 39: 365–378.PubMedCrossRefGoogle Scholar
  42. Jelinek, W., and Darnell, J.E., 1972, Double-stranded regions in heterogenous nuclear RNA from Hela cells, Proc. Nat. Acad. Sci. USA 69: 2537–2541.PubMedCrossRefGoogle Scholar
  43. Kaplan, H.S., and Howsden, F.L., 1964, Sensitization of purine-starved bacteria to X rays, Proc. Nat. Acad. Sci. USA 51: 181–188.PubMedCrossRefGoogle Scholar
  44. Killander, D., and Rigler, F., 1969, Activation of deoxyribonucleoprotein in human leukocytes stimulated with phytohemagglutinin, Exp. Cell Res. 54: 163–170.PubMedCrossRefGoogle Scholar
  45. Klevecz, R., and Hsu, T.C., 1964, The differential capacity for RNA synthesis: a cytological approach, Proc. Nat. Acad. Sci. USA 52: 811–817.PubMedCrossRefGoogle Scholar
  46. Kohne, D.E., and Byers, M.J., 1973, Amplification and evolution of DNA sequences expressed as RNA, Biochemistry 12: 2373–2378.PubMedCrossRefGoogle Scholar
  47. Kronenberg, L.H., and Humphreys, T., 1972, Double-stranded RNA in sea urchin embryos, Biochemistry 11: 2020–2026.PubMedCrossRefGoogle Scholar
  48. Ledoux, L., Huart, R., and Jacobs, M., 1974, DNA-mediated genetic correction of thiamineless arabidopsis thaliana, Nature 249: 17–21.PubMedCrossRefGoogle Scholar
  49. Levy, S., Simpson, R.T., and Sober, H.A., 1972, Fractionation of chromatin components, Biochemistry 11: 1547–1554.PubMedCrossRefGoogle Scholar
  50. Lowy, D.R., Rowe, W.P., Teich, N., and Hartley, J.W., 1971, Murine leukemia virus: high frequency activation in vitro by 5-IUDR and 5-BUDR, Science 174: 155–156.PubMedCrossRefGoogle Scholar
  51. McCarthy, B.J., and Hoyer, B.H., 1964, Identity of DNA and diversity of messenger RNA molecules in normal mouse tissues, Proc. Nat. Acad. Sci. USA 52: 915–922.PubMedCrossRefGoogle Scholar
  52. McGhee, J.D., and von Hippel, P.H., 1975, Formaldehyde as a probe of DNA structure. I. Reaction with exocyclic amino groups of DNA bases, Biochemistry 14: 1281–1296.PubMedCrossRefGoogle Scholar
  53. Montagnier, L., and Harel, L., 1971, Homology of double-stranded RNA from rat liver cells with the cellular genome, Nature New Biol. 229: 106–108.PubMedGoogle Scholar
  54. Nakatsu, S.L., Masek, M.A., Landrum, S., and Frenster, J.H., 1974, Activity of DNA templates during cell division and cell differentiation, Nature 248: 334–335.PubMedCrossRefGoogle Scholar
  55. Nomura, S., Fischinger, P.J., Mattern, C.F.T., Gerwin, B.I., andGoogle Scholar
  56. Dunn, K.J., 1973, Revertants of mouse cells transformed by murine sarcoma virus: flat variants induced by FUDR and colcemide, Virology 56: 152–163.PubMedCrossRefGoogle Scholar
  57. Oliver, D., and Chalkley, R., 1974, Assymmetric distribution of histones on DNA: a model for nucleohistone primary structure, Biochemistry 13: 5093–5098.PubMedCrossRefGoogle Scholar
  58. Paul, J., and Gilmour, R.S., 1968, Organ-specific restriction of transcription in mammalian chromatin, J. Mol. Biol. 34: 305–316.PubMedCrossRefGoogle Scholar
  59. Pederson, T., 1974, Gene activation in eukaryotes: are nuclear acidic proteins the cause or the effect? Proc. Nat. Acad. Sci. USA 71: 617–621.PubMedCrossRefGoogle Scholar
  60. Sevall, J.S., Cockburn, A., Savage, M., and Bonner, J., 1975, DNA-protein interactions of rat liver non-histone chromosomal protein, Biochemistry 14: 782–789.PubMedCrossRefGoogle Scholar
  61. Stern, R., and Friedman, R., 1971, RNA synthesis in animal cells in the presence of actinomycin, Biochemistry 10: 3635–3645.PubMedCrossRefGoogle Scholar
  62. Suzuki, T., Tsutsui, Y., and Takahashi, T., 1974, Ultrastructural detection of single-stranded DNA in rat liver nucleus by the electronmicroscopic immuno-peroxidase method, Exp. Cell Res. 89: 306–310.PubMedCrossRefGoogle Scholar
  63. Tanaka, A., and Nonoyama, M., 1974, Latent DNA of Epstein-Barr virus: separation from high molecular weight cell DNA in neutral glycerol gradients, Proc. Nat. Acad. Sci. USA 71: 4658–4661.PubMedCrossRefGoogle Scholar
  64. Tanaka, M., Levy, J., Terode, M., Breshon, R., Rifkind, R.A., and Marks, P.A., 1975, Induction of erythroid differentiation in murine virus infected erythroleukemia cells by highly polar compounds, Proc. Nat. Acad. Sci. USA 72: 1003–1006.PubMedCrossRefGoogle Scholar
  65. Teich, N., Lowy, D., Hartley, J.W., and Rowe, W.P., 1973, Studies of the mechanism of induction of infectious murine leukemia virus from AKR mouse embryo cells by 5-IUDR and 5-BUDR, Virology 51: 163–173.PubMedCrossRefGoogle Scholar
  66. Umansky, S.R., Kovalev, Y.I., and Tokarskaya, V.I., 1975, Specific interaction of chromatin non-histone proteins with DNA, Biochim. Biophys. Acta 383: 242–254.PubMedCrossRefGoogle Scholar
  67. van den Broek, W.K., Nooden, L.D., Sevall, J.S., and Bonner, J., 1973, Isolation, purification, and fractionation of non-histone chromosomal proteins, Biochemistry 12: 229–236.PubMedCrossRefGoogle Scholar
  68. Zetterberg, A., and Auer, G., 1970, Proliferative activity and cytochemical properties of nuclear chromatin related to local density of epithelial cells, Exp. CeZZ Res. 62: 262–270.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • John H. Frenster
    • 1
  1. 1.Department of MedicineStanford University School of MedicineStanfordUSA

Personalised recommendations