Skip to main content

Addition of Amino Acids and Related Substances to Nucleic Acids by Nucleophilic Catalysis

  • Chapter
Aging, Carcinogenesis, and Radiation Biology

Abstract

Little attention has been paid to nucleophilic reactants when considering the biologically important transformations of nucleic acids. The role of free radical processes in the radiation chemistry and photochemistry of nucleic acids is well appreciated (Smith, 1975). In the case of chemical carcinogenesis, it has been suggested that the ultimate carcinogens are often, or perhaps always, strong electrophilic reagents (Miller, 1970; Heidelberger, This Volume). Nucleic acids, do, however, contain a number of sites susceptible to nucleophilic attack, and there is no obvious reason why alterations at these positions should be of less significance then changes produced at other locations by other mechanisms. In fact, nucleophilic reactions on nucleic acid are involved in a number of biologically important processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andronikova, M.L., Velikodvorskaya, G.A., Tkhruni, F., and Tikhonenko, T.O., 1974, Biological effects associated with the modification of intraphage DNA with 0-methylhydroxylamine, Molecular Biology 8: 3–11.

    CAS  Google Scholar 

  • Banks, G.R., Brown, D.M., Streeter, D.G., and Grossman, L., 1971, Mutagenic analogues of cytosine: RNA polymerase template and substrate studies, J. Mol. Biol. 60: 425–439.

    Article  PubMed  CAS  Google Scholar 

  • Baron, F., and Brown, D.M., 1955, Nucleotides. XXXIII. The structure of cytidylic acids a and b, J. Chem. Soc. 1955: 2855–2860.

    Article  Google Scholar 

  • Boni, I.V., and Budowsky, E.I., 1973, Transformation of non-covalent interactions in nucleoproteins into covalent bonds induced by nucleophilic reagents. I. The preparation and properties of the products of bisulfite ion-catalyzed reaction of amino acids and peptides with cytosine derivatives, J. Biochim. (Tokyo) 73: 821–830.

    CAS  Google Scholar 

  • Brandie, R., and Erismann, K.M., 1973, Bee influssung der DNS-Synthese durch sulfit im wurzelmeristem der puffbohne (vicia faba), Experienta 29: 586–587.

    Article  Google Scholar 

  • Brown, D.M., and Hewlins, M.J.E., 1968a, The reaction between hydroxylamine and cytosine derivatives, J. Chem. Soc. (C) 1968: 1922–1924.

    Google Scholar 

  • Brown, D.M., and Hewlins, M.J.E., 1968b, Dihydrocytosine and related compounds, J. Chem. Soc. (C) 1968: 2050–2055.

    Google Scholar 

  • Brown, D.M., Hewlins, M.J.E., and Schell, P., 1968, The tautomeric state of N(4)-hydroxy-and of N(4)-amino-cytosine derivatives, J. Chem. Soc. (C) 1968: 1925–1929.

    Google Scholar 

  • Budowsky, E.I., Sverdlov, E.D., Shibaeva, R.P., Monastyrskaya, G.S., and Kochetkov, N.K., 1971, Mechanism of the mutagenic action of hydroxylamine. III. Reaction of hydroxylamine and 0methylhydroxylamine with the cytosine nucleus, Biochim. Biophys. Acta 246: 300–319.

    Article  PubMed  CAS  Google Scholar 

  • Budowsky, E.I., Sverdlov, E.D., and Monastyrskaya, G., 1972a, New method of selective and rapid modification of the cytidine residues, FEBS Lett. 25: 201–204.

    Article  PubMed  Google Scholar 

  • Budowsky, E.I., Sverdlov, E.D., and Spasokukotskaya, T.N., 1972b, Mechanism of the mutagenic action of hydroxylamine. VII. Functional activity and specificity of cytidine triphosphate modified with hydroxylamine and 0-methylhydroxylamine, Biochim. Biophys. Acta 287: 195–210.

    Article  PubMed  CAS  Google Scholar 

  • Cashmore, A.R., Brown, D.M., and Smith, J.D., 1971, Selective reaction of methoxyamine with cytosine bases in transfer ribonucleic acid, J. Mol. Biol. 59: 359–371.

    Article  PubMed  CAS  Google Scholar 

  • Cashmore, A.R., and Petersen, G.B., 1969, The degradation of DNA by hydrazine: a critical study of the suitability of the reaction for the quantitative determination of purine nucleotide sequences, Biochim. Biophys. Acta 174: 591–603.

    Article  PubMed  CAS  Google Scholar 

  • Chu, B.F.C., Brown, D.M., and Burdon, M.G., 1973, Effect of nitrogen and of catalase on hydroxylamine and hydrazine mutagenesis, Mutat. Res. 20: 265–270.

    Article  PubMed  CAS  Google Scholar 

  • Das, G., and Runeckles, V.C., 1974, Effects of bisulfite on metabolic development in synchronous chlorella pyrenoidosa, Environ. Res. 7: 473–483.

    Article  Google Scholar 

  • Dorange, J.-L., and Dupuy, P., 1972, Mise en evidence d’une action mutagene du sulfite de sodium sur la levure, C.R. Acad. Sci. Paris, Ser. D. 274: 2798–2800.

    CAS  Google Scholar 

  • Drake, J.W., 1970, “The Molecular Basis of Mutation,” Holden-Day, San Francisco.

    Google Scholar 

  • Filipowicz, W., Wodnar, A., Zagorska, L., and Szafranski, P., 1972, f2 RNA structure and peptide chain initiation: fMet-tRNA binding directed by methoxyamine-modified unfolded or native-like f2 RNA’s, Biochim. Biophys. Res. Commun. 49: 1272–1279.

    Google Scholar 

  • Fishbein, L., Flamm, W.G., and Falk, H.L., 1970, “Chemical Mutagens, Environmental Effects on Biological Systems,” Academic Press, New York.

    Google Scholar 

  • Flavell, R.A., Sako, D.L., Bandle, E.F., and Weissman, C., 1974, Site-directed mutagenesis: generation of an extracistronic mutation in bacteriophage OR RNA, J. Mol. Biol. 89: 255–272.

    Article  PubMed  CAS  Google Scholar 

  • Fraenkel-Conrat, H., and Singer, B., 1972, The chemical basis for the mutagenicity of hydroxylamine and methoxyamine, Biochim. Biophys. Acta 262: 264–268.

    Article  PubMed  CAS  Google Scholar 

  • Freese, A., 1971, Molecular mechanisms of mutations, in “Chemical Mutagens, Principles and Methods for Their Detection,” (A. Hollaender, ed.), Vol. 1, pp. 1–56, Plenum Press, New York.

    Google Scholar 

  • Gal-Or, L., Mellema, J.E., Moudrianakis, N., and Beer, M., 1967, Electron microscopy study of base sequence in nucleic acids. VII. Cytosine-specific addition of acyl hydrazides, Biochemistry 6: 1909–1915.

    Article  PubMed  CAS  Google Scholar 

  • Garrett, E.R., and Tsau, J., 1972, Solvolyses of cytosine and cytidine, J. Pharm. Sci. 61: 1052–1060.

    Article  PubMed  CAS  Google Scholar 

  • Havelaar, K.J., and de Waard, A., 1973, Isolation of purine oligo-nucleotides after hydrazinolysis of deoxyribonucleic acid, Rec. Tray. Chim. Pays-Bas 92: 132–144.

    Article  CAS  Google Scholar 

  • Hayatsu, H., 1975, Bisulfite modification of nucleic acids and their constituents, Progr. Nucleic Acid Res. Mol. Biol. 16 (in press).

    Google Scholar 

  • Hayatsu, H., and Miura, M., 1970, The mutagenic action of sodium bisulfite, Biochem. Biophys. Res. Commun. 39: 156–160.

    Article  PubMed  CAS  Google Scholar 

  • Hayatsu, H., Takeisha, K.-I., and Ukita, T., 1966, The modification of nucleosides and nucleotides. III. A selective modification of cytidine with semicarbazide, Biochim. Biophys. Acta 123: 445–457.

    Article  PubMed  CAS  Google Scholar 

  • Hayatsu, H., and Ukita, T., 1964, Selective modification of cytidine residue in ribonucleic acid by semicarbazide, Biochem. Biophys. Res. Commun. 14: 198–203.

    Article  PubMed  CAS  Google Scholar 

  • Hayatsu, H., Wataya, Y., and Kai, K., 1970a, The addition of sodium bisulfite to uracil and to cytosine, J. Amer. Chem. Soc. 92: 724–726.

    Article  CAS  Google Scholar 

  • Hayatsu, H., Wataya, Y., Kai, K., and Iida, S., 1970b, Reaction of sodium bisulfite with uracil, cytosine, and their derivatives, Biochemistry 9: 2858–2865.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, D.H., and Baron, F.H., 1967, Hydrazinolysis of some purines and pyrimidines and their related nucleosides and nucleotides, J. Chem. Soc. (C) 1967: 1528–1533.

    Google Scholar 

  • Janion, C., and Shugar, D., 1967, Reaction of amines with dihydro- cytosine analogs and formation of amino acid and peptidyl derivatives of dihydropyrimidines, Acta Biochim. Polon. 14: 293–302.

    CAS  Google Scholar 

  • Janion, C., and Shugar, D., 1971, Chemical mutagenesis: reaction of N-methylhydroxylamine with cytosine analogues, Acta Biochim. Polon. 18: 403–418.

    PubMed  CAS  Google Scholar 

  • Johns, H.E., LeBlanc, J.C., and Freeman, K.B., 1965, Reversal and deamination rates of the main ultraviolet photoproduct of cytidylic acid, J. Mol. Biol. 13: 849–861.

    Article  CAS  Google Scholar 

  • Kai, K., Tsuruo, T., and Hayatsu, H., 1974, The effect of bisulfite modification on the template activity of DNA for DNA polymerase I, Nucleic Acids Res. 1: 889–899.

    Article  PubMed  CAS  Google Scholar 

  • Kikugawa, K., Hayatsu, H., and Utika, T., 1967, Modification of nucleosides and nucleotides. V. A selective modification of cytidylic acids with Girard-P reagent, Biochim. Biophys. Acta 134: 221–231.

    Article  CAS  Google Scholar 

  • Lawley, P.D., 1967, Reaction of hydroxylamine at high concentration with deoxycytidine or with polycytidylic acid: evidence that substitution of amino groups in cytosine residues by hydroxy-lamine is a primary reaction, and the possible relevance to hydroxylamine mutagenesis, J. Mol. Biol. 24: 75–81.

    Article  CAS  Google Scholar 

  • Levine, A.F., Fink, L.M., Weinstein, I.B., and Grunberger, D., 1974, Effect of N-2-acetylaminofluorene modification on the conformation of nucleic acids, Cancer Res. 34: 319–327.

    PubMed  CAS  Google Scholar 

  • Lingens, F., and Schneider-Bernlöhr, H., 1966, Uber die unsetzung naturlich vorkommender pyrimidinbasen mith hydrazin und methylsubstituierten hydrazinen, Justus Liebigs Ann. Chem. 686: 134–144.

    Article  Google Scholar 

  • Linney, E.A., Hayashi, M.N., and Hayashi, M., 1972, Gene A of 0174. I. Isolation and identification of its products, Virology 50: 381–387.

    Article  PubMed  CAS  Google Scholar 

  • Ma, T.-H., Isbandi, D., Khan, S.H., and Tseng, Y.-S., 1973, Low level of SO2 enhanced and chromatid aberrations in tradescantia pollen tubes and seasonal variation of the aberration rates, Mutat. Res. 21: 93–100.

    Article  CAS  Google Scholar 

  • Miller, J.A., 1970, Carcinogenesis by chemicals: an overview, Cancer Res. 30: 559–575.

    PubMed  CAS  Google Scholar 

  • Mukai, F., Hawryluk, I., and Shapiro, R., 1970, The mutagenic specificity of sodium bisulfite, Biochem. Biophys. Res. Commun. 39: 983–988.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, J.H., Grunberger, D., Cantor, C.R., and Weinstein, I.B., 1971, Modification of ribonucleic acid by chemical carcinogens. IV. Circular dichroism and proton magnetic resonance studies of oligonucleotides modified with N-2-acetylaminofluorene, J. Mol. Biol. 62: 331–346.

    Article  PubMed  CAS  Google Scholar 

  • Notari, R.E., 1967, A mechanism for the hydrolytic deamination of cytosine arabinoside in aqueous buffer, J. Pharm. Sci. 56: 804–809.

    Article  PubMed  CAS  Google Scholar 

  • Notari, R.E., Chin, M.L., and Cardoni, A., 1970, Intermolecular and intramolecular catalysis in deamination of cytosine nucleosides, J. Pharm. Sci. 59: 28–32.

    Article  CAS  Google Scholar 

  • Phillips, J.H., and Brown, D.M., 1967, The mutagenic action of hydroxylamine, Progr. Nucleic Acid Res. Mol. Biol. 7: 349–367.

    Article  CAS  Google Scholar 

  • Robertus, J.D., Ladner, J.E., Finch, J.T., Rhodes, D., Brown, R.S., Clark, B.F.C., and Klug, A., 1974, Correlation between three-dimensional structure and chemical reactivity of transfer RNA, Nucleic Acids Res. 1: 927–932.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, L.K., and Calkins, C.A., 1970, Sulfur-dioxide-induced lymphocyte defects in human peripheral blood cultures, Environ. Res. 3: 473–483.

    Article  CAS  Google Scholar 

  • Schulman, L.H., and Her, M.O., 1973, Reaction of altered E. coli formylmethionine transfer RNA by bacterial T factor, Biochem. Biophys. Res. Commun. 51: 275–283.

    Article  PubMed  CAS  Google Scholar 

  • Schulman, L.H., Shapiro, R., Law, D.C.F., and Louis, J.B., 1974, A simplified method for study of RNA conformation-reaction of formylmethionine transfer RNA with [14C]methylamine-bisulfite, Nucleic Acids Res. 1: 1305–1316.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, R., and Braverman, B., 1972, Modification of polyuridylic acid by bisulfite: effect on double helix formation and coding properties, Biochem. Biophys. Res. Commun. 47: 554–550.

    Article  Google Scholar 

  • Shapiro, R., Braverman, B., Louis, J.B., and Servis, R.E., 1973, Nucleic acid reactivity and conformation. II. Reaction of cytosine and uracil with sodium bisulfite, J. Biol. Chem. 248: 4060–4064.

    PubMed  CAS  Google Scholar 

  • Shapiro, R., DiFate, V., and Welcher, M., 1974, Deamination of cytosine derivatives by bisulfite. Mechanism of the reaction, J. Amer. Chem. Soc. 96:906–912..

    Google Scholar 

  • Shapiro, R., and Klein, R.S., 1966, The deamination of cytidine and cytosine by acidic buffer solutions. Mutagenic implications, Biochemistry 6: 2358–2362.

    Article  Google Scholar 

  • Shapiro, R., and Klein, R.S., 1967, Reactions of cytosine derivatives with acidic buffer solutions. II. Studies on transamination, deamination, and deuterium exchange, Biochemistry 7: 3576–3582.

    Article  Google Scholar 

  • Shapiro, R., Law, D.C.F., and Weisgras, J.M., 1972, A new chemical probe for single-stranded RNA, Biochem. Biophys. Res. Commun. 49: 358–366.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, R., Servis, R.E., and Welcher, M., 1970, Reactions of uracil and cytosine derivatives with sodium bisulfite. A specific deamination method, J. Amer. Chem. Soc. 92: 422–424.

    Article  CAS  Google Scholar 

  • Shapiro, R., and Weisgras, J.M., 1970, Bisulfite-catalyzed trans-amination of cytosine and cytidine, Biochem. Biophys. Res. Commun. 40: 839–843.

    Article  PubMed  CAS  Google Scholar 

  • Simukova, N.A., and Budowsky, E.I., 1974, Conversion of non-covalent interactions in nucleoproteins into covalent bonds: UV-induced formation of polynucleotide-protein crosslinks in bacteriophage Sd virions, FEBS Lett. 38: 299–303.

    Article  PubMed  CAS  Google Scholar 

  • Simukova, N.A., Turchinsky, M.F., Boni, I.V., Skoblov, Yu. M., and Budowsky, E.I., 1975, UV-induced cytosine involved poly-nucleotide-protein cross-linking. Abstr. Int. Symp. “Protein and Other Adducts to DNA: Their Significance to Aging, Carcinogenesis and Radiation Biology,” Williamsburg, Virginia, May 2–6, 1975.

    Google Scholar 

  • Smith, K.C., 1975, The radiation-induced addition of protein and other molecules to nucleic acids, in “Photochemistry and Photobiology of Nucleic Acids” (S.Y. Wang, ed.), Academic Press, New York (in press).

    Google Scholar 

  • Small, G.D., and Gordon, M.P., 1968, Reaction of hydroxylamine and methoxyamine with the ultraviolet-induced hydrate of cytidine, J. Mol. Biol. 34: 281–291.

    Article  PubMed  CAS  Google Scholar 

  • Sono, M., Wataya, W., and Hayatsu, H., 1973, Role of bisulfite in the deamination and the hydrogen isotype exchange of cytidylic acid, J. Amer. Chem. Soc. 95: 4745–4749.

    Article  CAS  Google Scholar 

  • Summers, G., and Drake, J.W., 1971, Bisulfite mutagenesis in bacteriophage T4, Genetics 68: 603–607.

    PubMed  CAS  Google Scholar 

  • Sverdlov, E.D., Krapivko, A.P., and Budowsky, E.I., 1971, Tautomeric equilibrium of 1-D-ribofuranosyl-2-keto-4-(N-methoxyamino) pyrimidine, Khim. Geterotsikl. Soedin 9: 1264–1267.

    Google Scholar 

  • Sverdlov, E.D., Monastyrskaya, G.S., and Budowsky, E.I., 1972a, Determination of the number of cytidine residues in oligonucleotides, FEBS Lett. 28: 236–238.

    Article  PubMed  CAS  Google Scholar 

  • Sverdlov, E.D., Monastryrskaya, G.S., Budowsky, E.I., and Grachev, M.A., 1972b, A novel approach to structural analysis of oligonucleotides, FEBS Lett. 28: 231–235.

    Article  PubMed  CAS  Google Scholar 

  • Temperli, A., Turler, H., Rust, P., Danon, A., and Chargaff, E., 1964, Studies in the nucleotide arrangement in deoxyribonucleic acid. IX. Selective degradation of pyrimidine deoxyribonucleotides, Biochim. Biophys. Acta 91: 462–476.

    PubMed  CAS  Google Scholar 

  • Tikchonenko, T.I., Budowsky, E.I., Sklyadneva, V.B., and Khromov, I.S., 1971, The secondary structure of bacteriophage DNA in situ. III. Reaction of Sd phage with 0-methylhydroxylamine J. Mol. Biol. 55: 535–547.

    Article  PubMed  CAS  Google Scholar 

  • Tikchonenko, T.I., Kisseleva, N.P., Zintshenko, A.I., Ulanov, B.P., and Budowsky, E.I., 1973, Peculiarities of the secondary structure of bacteriophage DNA in situ. IV. Covalent cross-links between DNA and protein that arise in the reaction of Sd phage with 0-methylhydroxylamine, J. Mol. Biol. 73: 109–119.

    Article  PubMed  CAS  Google Scholar 

  • Turchinsky, M.F., Boni, I.V., and Budowsky, E.I., 1975, Bisulfite-induced cytosine involved polynucleotide-protein crosslinking. Abstr. Int. Symp. “Protein and Other Adducts to DNA: Their Significance to Aging, Carcinogenesis and Radiation Biology,” Williamsburg, Virginia, May 2–6, 1975.

    Google Scholar 

  • Turchinsky, M.F., Kusova, K.S., and Budowsky, E.I., 1974, Conver- sion of non-covalent interactions in nucleoproteins into covalent bonds: bisulfite-induced formation of polynucleotide-protein crosslinks in MS2 bacteriophage virions, FEBS Lett. 38: 304–307.

    Article  PubMed  CAS  Google Scholar 

  • Verdlov, E.D., Monastyrskaya, G.S., Guskova, L.I., Levitan, T.L., Sheichenko, V.I., and Budowsky, E.I., 1974, Modification of cytidine residues with a bisulfite-O-methylhydroxylamine mixture, Biochim. Biophys. Acta 340: 153–165.

    Article  PubMed  CAS  Google Scholar 

  • U.S. Department of Health, Education, and Welfare, 1969, “Air Quality Criteria for Sulfur Oxides,” National Air Pollution Control Administration Publication No. AP-50, Washington, D.C.

    Google Scholar 

  • Wechter, W.J., and Kelly, R.C., 1970, The mechanism of the deamination of cytidine, Collect Czech. Chem. Commun. 35: 1991–2002.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shapiro, R. (1976). Addition of Amino Acids and Related Substances to Nucleic Acids by Nucleophilic Catalysis. In: Smith, K.C. (eds) Aging, Carcinogenesis, and Radiation Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1662-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1662-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1664-1

  • Online ISBN: 978-1-4757-1662-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics