On Proton Mobilities in Individual Hydrogen Bonds

  • Mark A. Ratner
  • J. R. Sabin


The hydrogen bond has been under intense scrutiny in physical and chemical systems since its definition by Latimer and Rodebush in 1920 /1,2/. Investigations in biological systems, however, are of much more recent vintage. Indeed, the pioneering investigations of Löwdin /3/ were among the first attempts to characterize the role of protonic motion in hydrogen bonds in the properties of biological macromolecules. In particular, Löwdin /3/ stressed the importance of proton tunneling, and showed that this provides a mechanism for transfer and for loss of information stored in the form of proton position in a double well. Recent experimental advances, particularly in the area of picosecond spectroscopy /4/, have made it possible to experimentally observe the motion of molecular subunits, and the promise of being able to delineate the tunneling process has reemphasized the need for an understanding of the dynamics of protons in hydrogen bonds.


Tunneling Process Proton Mobility Proton Motion Localize Basis State Pioneer Investigation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Latimer and W.H. Rodebush, J. Am. Chem. Soc. 42, 1419 (1920).CrossRefGoogle Scholar
  2. 2.
    M.L. Huggins, unpublished (cited by G.N. Lewis in “Valence and the Structure of Atoms and Molecules”, Chem. Catalog Co., New York, 1923, p. 109 ).Google Scholar
  3. 3.
    P.O. Löwdin, Adv. Quantum Chem. 2, 213 (1965)CrossRefGoogle Scholar
  4. P.O. Löwdin, Mutation Res. 2, 218 (1965)CrossRefGoogle Scholar
  5. P.O. Löwdin, Pont. Acad. Scient. 31, 1 (1967)Google Scholar
  6. P.O. Löwdin, Ann. N.Y. Acad. Scient. 31, 1 (1967)Google Scholar
  7. P.O. Löwdin, Ann. N.Y. Acad. Sci. 158, 86 (1969).ADSCrossRefGoogle Scholar
  8. 4.
    cf. eg. P.M. Rentzepis, R.P. Jones and J. Jortner, J. Chem. Phys. 59, 766 (1973)ADSCrossRefGoogle Scholar
  9. W.S. Struve, P.M. Renzepis and J. Jortner, ibid, 59, 5014 (1973).ADSGoogle Scholar
  10. 5.
    J.C. Slater, J. Chem. Phys. 2, 16 (1941).ADSCrossRefGoogle Scholar
  11. 6.
    P.G. deGennes, Solid St. Comm. 1, 132 (1963)Google Scholar
  12. Y. Takagi, J. Phys. Soc. (Japan) 3, 271 (1948)ADSCrossRefGoogle Scholar
  13. R. Blinc and M. Ribaric, Phys. Rev. 130, 1816 (1963).ADSCrossRefGoogle Scholar
  14. 7.
    K.K. Kobayashi, J. Phys. Soc. (Japan) 24, 497 (1968)ADSCrossRefGoogle Scholar
  15. R. Blinc and B. Zeks, Adv. Phys. 21, 693 (1972)ADSCrossRefGoogle Scholar
  16. K. Godzik and A. Blumen, Phys. Stat. Sol. B 66, 569 (1974).ADSCrossRefGoogle Scholar
  17. 8.
    B.I. Stepanov, Zh. Fiz. Khim. 12, 507 (1945)Google Scholar
  18. Y. Marechal and A. Witkowski, J. Chem. Phys. 48, 3697 (1968)ADSCrossRefGoogle Scholar
  19. S.F. Fischer, G.L. Hofacker and M.A. Ratner, J. Chem. Phys. l2, 1932 (1969)Google Scholar
  20. M.A. Ratner and J.R. Sabin, in “Wave Mechanics, the First Fifty Years”, eds. W.C. Price et. al., Butterworth, London, 1973Google Scholar
  21. Y. Marechal, G.L. Hofacker, and M.A. Ratner in “Hydrogen Bonding”, eds. P. Schuster et. al., North Holland, Amsterdam, in p ress.Google Scholar
  22. 9.
    L. Onsager and M. Dupuis, in “Electrolytes”, ed. B. Pesce, Pergamon Press, New York, 1962Google Scholar
  23. P. Gosar, Nuovo Cim. 30, 931 (1963)zbMATHCrossRefGoogle Scholar
  24. S.F. Fischer and G.L. Hofacker in “Physics of Ice”, eds. N. Riehl, Plenum, New York, 1969Google Scholar
  25. P. Gosar, ibid; S.F. Fischer, G.L. Hofacker, and J.R. Sbin, Phys. kondens. Mat. 8, 268 (1969).Google Scholar
  26. 10.
    Polarons and Excitons“, C.G. Kuper and G. Whitfield, Oliver and Boyd, Edinburgh, 1963.Google Scholar
  27. 11.
    cf. eg. R. Rein and F.E. Harris, J. Chem. Phys. 41, 3393 (1964); 42, 2177 (1965).ADSCrossRefGoogle Scholar
  28. 12.
    J. Brickmann and H. Zimmerman, J. Chem. Phys. 50 1608 (1969).CrossRefGoogle Scholar
  29. 13.
    M.D. Harmony, Chem. Soc. Revs. 2, 211 (1973). It must be remembered that the considerations of Harmony and of Brick-mann /12/ apply only to rigourously one-dimensional potentials. For real hydrogenbonded systems, the coupling results in a finite width for the localized double well states, and the tremendous reduction of tunneling rate for small asymmetrics predicted by (5) does not occur. Indeed, the “downhill” tunneling in these systems should be faster than the symmetric tunnelings essentially because the argument of the negative exponential in the JWKB expression is reduced by the asymmetry (A. Aviram, P.E. Seiden and M.A. Ratner, to be published).Google Scholar
  30. 14.
    N. Sheppard, in “Hydrogen Bonding”, ed. D. Hadzi, Pergemon, Oxford, 1959.Google Scholar
  31. 15.
    N. Rösch, Thesis, T.U., München, 1971; Chem. Phys. 1, 220 (1973)CrossRefGoogle Scholar
  32. N. Rösch and M. Ratner, J. Chem. Phys. 61, 3344 (1974).ADSCrossRefGoogle Scholar
  33. 16.
    M.D. Newton and S. Ehrenson, J. Amer. Chem. Soc. 93, 4971 (1971)CrossRefGoogle Scholar
  34. R. Janoschek ibid 24, 2387 (1972).Google Scholar
  35. 17.
    A. Nitzan and R.J. Silbey, J. Chem. Phys. 60, 4070 (1971+).Google Scholar
  36. 18.
    G. Sewell, in “Polarons and Excitations”, eds. C.G. Kuper and G. Whitfield,Oliver and Boyd, Edinburgh, 1963.Google Scholar
  37. 19.
    T. Holstein, Ann. Phys. 8, 325–389 (1959).ADSzbMATHCrossRefGoogle Scholar
  38. 20.
    S. Glasstone,K.J. Laidler and H. Eyring, “Theory of Rate Processes”, McGraw-Hill, New York, 1941.Google Scholar
  39. 21.
    R.G. Carbonell and M.D. Kostin, J. Chem. Phys. 60, 2047 (1974).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Mark A. Ratner
    • 1
    • 2
  • J. R. Sabin
    • 1
    • 2
  1. 1.Department of ChemistryNorthwestern UniversityEvanstonUSA
  2. 2.Quantum Theory Project, Department of PhysicsUniversity of FloridaGainesvilleUSA

Personalised recommendations