Towards the Theoretical Determination of the Conformation of Biological Macromolecules

  • János J. Ladik


The theoretical determination of conformations of biological macromolecules like nucleic acids or proteins constitutes an important part of theoretical biology. To handle these rather large problems empirical and semiempirical schemes have been proposed ranging from empirical potential functions /1/ to various semi-empirical treatments of the relevant fragments of macromolecules. Among the semiempirical methods are Extended Hückel /2/, CNDO/2 /3/, MINDO/2 /4/, and PCILO in CNDO/2 parametrization /5/. In many cases these methods provide reasonable results, but in other cases the results have been unsatisfactory. Since the semiempirical methods in general lack a sound theoretical foundation it is difficult to predict their limits of applicability. Furthermore, in most of the conformational calculations entropy effects were neglected.


Interaction Energy Biological Macromolecule Theoretical Determination Semiempirical Method Hydrogen Bond Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See for instance: H.A. Scheraga, Adv. Phys. Org. Chem. 6, 103 (1968); G.N. Ramachandran and V. Sasisekharan, Adv. in Prot. Chem. 23, 283 (1968).Google Scholar
  2. 2.
    See for instance: S. Kang, C.L. Johnson, J.P. Green, J. Mol. S.ruct, 15, 453 (1973)Google Scholar
  3. L.B. Kier, J. Pharm. Sci. 57, 1188 (1968).Google Scholar
  4. 3.
    See for instance: A. St¢gard, Theoret. Chim. A.ta, 33, 339 (1974)Google Scholar
  5. O. Gropen, H.M. Seip, Chem. Phys. Letters 11, 445 (1971).Google Scholar
  6. 4.
    M.J.S. Dewar, E. Haselbach, J. Am. Chem. Soc. 92, 590 (1970).Google Scholar
  7. 5.
    See for instance: B. Maigret, B. Pullman, Theoret. Chim. Acta, 35, 113 (1974)Google Scholar
  8. D. Perahia, A. Pullman, Chem. Phys. Letters, 19 73 (1973)Google Scholar
  9. Ph. Courrière, J.L. Couheils, B. Pullman, Compt. Rend. Acad. Sci. Paris 272, 1697 (1971).Google Scholar
  10. 6.
    J.N. Murell, M. Randic and O.R. Williams, Proc. Roy. Soc. A 284 566 (1965).Google Scholar
  11. 7.
    H. Lischka, Chem. Phys. 2, 191 (1973).Google Scholar
  12. 8.
    P.-0. Löwdin, Study Week on Molecular Forces, North Holland Publ. Co., Amsterdam 1967, p. 637.Google Scholar
  13. 9.
    J.C. Slater, Phys. Rev. 81, 385 (1951).Google Scholar
  14. 10.
    P. Otto and J. Ladik, Chem. Phys. 8, 192 (1975).Google Scholar
  15. 11.
    P. Otto and J. Ladik, to be published.Google Scholar
  16. 12.
    P. Otto and J. Ladik, submitted to Chem. Phys.Google Scholar
  17. 13.
    M. Rosenberg and F. Martino, J. Chem. Phys. (accepted).Google Scholar
  18. 14.
    See for instance: R. Ahlrichs, W. Kutzelnigg, J. Chem. Phys. 48, 1819 (1968)Google Scholar
  19. W. Kutzèlnigg, Theoret. Chim. Acta, 1, 327 (1963).Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • János J. Ladik
    • 1
  1. 1.Lehrstuhl für Theoretische Chemie der Friedrich-AlexanderUniversität Erlangen-NürnbergBRD-852 ErlangenDeutschland

Personalised recommendations