Long-Range Interaction in Some Two-Electron Systems

  • W. Kołos


There seems to be no area of quantum chemistry which has not been influenced by Löwdin’s work. In the theory of inter-molecular interactions there is the accurate calculation by Hirschfelder and Löwdin /1/ of the dispersion interaction between two ground state hydrogen atoms. However, first of all, there is the pioneering work on the properties of ionic crystals /2/ which, although published almost 30 years ago, still represents the highest achievement in this field. The work clearly shows the enormous complexity of the problem and the necessity of more approximate treatments of the interaction between closed shell systems.


Interaction Energy Vibrational Level Helium Atom Potential Energy Curve Resonance Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.O. Hirschfelder and P.O. Löwdin, Mol. Phys. 2. 299 (1959).Google Scholar
  2. J.O. Hirschfelder and P.O. Löwdin, Mol. Phys. 9, 491 (1966).Google Scholar
  3. 2.
    P.O. Löwdin, Arkiv f. mat. astr. o. fysik 35A, No. 9,30 (191+8) and “A Theoretical Investigation of Some Properties of Ionic Crystals” ( Almquist & Wicksell, Uppsala, 1948 ).Google Scholar
  4. 3.
    D.M. Chipman, J.D. Bowman and J.O. Hirschfelder, J. Chem. Phys. 59, 2830 (1973).ADSCrossRefGoogle Scholar
  5. 4.
    P.O. Löwdin, J.Chem. Phys. 18, 365 (1950).ADSCrossRefGoogle Scholar
  6. 5.
    H. Kreek and W.J. Meath, J. Chem. Phys. 50, 2289 (1963).ADSCrossRefGoogle Scholar
  7. 6.
    G. Chalasinski and B. Jeziorski, Mol. Phys. 27, 61+9 (1974).Google Scholar
  8. 7.
    W. Kokos, Int. J. Quantum Chem. 8S, 241 (1974).Google Scholar
  9. 8.
    W. Kolos, Int. J. Quantum Chem., 133 (1975).Google Scholar
  10. 9.
    J.F. Bukta and W.J. Meath, Mol. Phys. 22, 1203 (1973).ADSCrossRefGoogle Scholar
  11. 10.
    G.W. King and J.H. Van Vleck, Phys. Rev. 55, 1165 (1939).ADSzbMATHCrossRefGoogle Scholar
  12. 11.
    R.S. Mulliken, Phys. Rev. 120, 1674 (1960).MathSciNetADSCrossRefGoogle Scholar
  13. 12.
    W. Kołos and L. Wolniewicz, J.Chem.Phys. 43, 2429 (1965).ADSCrossRefGoogle Scholar
  14. 13.
    W. Kotos, Int.J.Quantum.Chem., in publication.Google Scholar
  15. 14.
    P. Bertoncini and A.C. Wahl, Phys. Rev. Letters 25, 991 (1970).ADSCrossRefGoogle Scholar
  16. 15.
    D.R. McLaughlin and H.F. Schaefer III, Chem. Phys. Letters 12, 224 (1971).ADSCrossRefGoogle Scholar
  17. 16.
    B. Liu and A.D. McLean, J. Chem. Phys. 59, 4557 (1973).ADSCrossRefGoogle Scholar
  18. 17.
    W. Kotos and J.M. Peek, to be published.Google Scholar
  19. 18.
    S. Peyerimhoff, J. Chem. Phys. 43, 998 (1965).ADSCrossRefGoogle Scholar
  20. 19.
    T.R. Singh, Chem. Phys. Letters 11, 598 (1971).ADSCrossRefGoogle Scholar
  21. 20.
    W.D. Davison, Proc. Phys. Soc. 8/, 133 (1966).Google Scholar
  22. 21.
    I. Dabrowski and G. Herzberg, Can. J. Phys. in publication.Google Scholar
  23. 22.
    W. Ko/os and L. Wolniewicz, Can. J. Phys. in publication.Google Scholar
  24. 23.
    W. Kotos, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • W. Kołos
    • 1
    • 2
  1. 1.Quantum Chemistry LaboratoryUniversity of WarsawPoland
  2. 2.Max Planck Institute for Physics and AstrophysicsMunichGermany

Personalised recommendations