On the Löwdin Bracketing Function

  • Erkki Brändas

Abstract

In his series of publications “studies in perturbation theory”, /1–2/ Löwdin introduced the bracketing function
$$f(z) = < \phi \left| {H + HT(Z)H} \right|\phi >$$
(1)
where H is the Hamiltonian, φ the reference function belonging to the Hilbert space h and T the reduced resolvent
$$T(z) = P{({z^{ - PHP}})^{ - 1}}P$$
(2)
$$p = 1 - 0;{\kern 1pt} 0 = \left| {\phi >< \phi } \right|;{\kern 1pt} < \left. \phi \right|\phi >= 1.$$
(3)

Keywords

Conjugate Gradient Method Inhomogeneous Equation Pade Approximant Fermi Golden Rule Resolvent Identity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.O. Löwdin, J. Chem. Phys. 19, 1396 (1951).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    P.O. Löwdin, J. Mol. Spectry. 10, 12 (1963);ADSCrossRefGoogle Scholar
  3. P.O. Löwdin, J. Mol. Spectry. 13, 326 (1964);ADSCrossRefGoogle Scholar
  4. P.O. Löwdin, J. Math. Phys. 3, 969 (1962);ADSMATHCrossRefGoogle Scholar
  5. P.O. Löwdin, J. Math. Phys. 3, 1171 (1962);ADSMATHCrossRefGoogle Scholar
  6. P.O. Löwdin, J. Mol. Spectry. 14, 112 (1964);ADSCrossRefGoogle Scholar
  7. P.O. Löwdin, J. Mol. Spectry. 14, 119 (1964);ADSCrossRefGoogle Scholar
  8. P.O. Löwdin, J. Mol. Spectry. 14, 131 (1964);ADSCrossRefGoogle Scholar
  9. P.O. Löwdin, J. Math. Phys. 6, 1341 (1965);ADSMATHCrossRefGoogle Scholar
  10. P.O. Löwdin, Phys. Rev. 139, A357 (1965);CrossRefGoogle Scholar
  11. P.O. Löwdin, J. Chem. Phys. 43, S175 (1965);ADSCrossRefGoogle Scholar
  12. P.O. Löwdin, C.H. Wilcox, Ed., Perturbation Theory and its Application in Quantum Mechanics ( Wiley, New York, 1966 ), page 255;Google Scholar
  13. P.O. Löwdin, Int. J. Quant. Chem. 2, 867 (1968);ADSCrossRefGoogle Scholar
  14. P.O. Löwdin, Int. J. Quant. Chem. 5, 685 (1971).CrossRefGoogle Scholar
  15. 3.
    H. Feshbach, Ann. Phys. 5, 357 (1958).MathSciNetADSMATHCrossRefGoogle Scholar
  16. H. Feshbach, Ann. Phys. 19, 287 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  17. 4.
    W.H. Miller, Chem. Phys. Letters 4, 627 (1970).ADSCrossRefGoogle Scholar
  18. 5.
    E. Brändas, Physica (to be published).Google Scholar
  19. 6.
    A.P. Grecos and I. Prigogine, Physica 59, 77 (1972).MathSciNetADSCrossRefGoogle Scholar
  20. 7.
    D.A. Micha and E. Brändas; J. Chem. Phys. 55, 4792 (1971);ADSCrossRefGoogle Scholar
  21. D.A. Micha and E. Brändas; J. Math. Phys. 13, 155 (1972).ADSCrossRefGoogle Scholar
  22. 8.
    B.A. Lippmann and J. Schwinger, Phys. Rev. 12, 469 (1950).MathSciNetADSCrossRefGoogle Scholar
  23. 9.
    O. Goscinski and E. Brändas Int. J. Quant. Chem. 5, 131 (1971);CrossRefGoogle Scholar
  24. O. Goscinski and E. Brändas Int. J. Quant. Chem. 3, 133 (1973).CrossRefGoogle Scholar
  25. 10.
    E.A. Hylleraas, Z. Physik 62, 209 (1930).ADSCrossRefGoogle Scholar
  26. 11.
    P. Goldhammer and E. Feenberg, Phys. Rev. 101, 1233 (1956).ADSMATHCrossRefGoogle Scholar
  27. 12.
    O. Goscinski, Int. J. Quant. Chem. 1, 769 (1967).Google Scholar
  28. 13.
    O. Goscinski and E. Brandas; Chem. Phys. Letters 2, 299 (1968).ADSCrossRefGoogle Scholar
  29. 14.
    E. Brandas and O. Goscinski, Int. J. Quant. Chem. 3S, 383 (1970);Google Scholar
  30. E. Brandas and O. Goscinski, Phys. Rev. 1A, 552 (1970).ADSGoogle Scholar
  31. 15.
    R.J. Bartlett and E.J. Brandas, J. Chem. Phys. 56, 5467 (1972).ADSCrossRefGoogle Scholar
  32. 16.
    P.O. Löwdin, Int. J. Quant. 4S, 231 (1971).Google Scholar
  33. 17.
    P. Lindner and P.O. Löwdin, Int. J. Quant. Chem. 2S, 161 (1968).ADSCrossRefGoogle Scholar
  34. 18.
    P.O. Löwdin, Preliminary Research Report, Uppsala Quantum hemistry Group (1975), Uppsala University.Google Scholar
  35. 19.
    P.O. Löwdin, Advan. Quant. Chem. 3, 323 (1967).ADSCrossRefGoogle Scholar
  36. 20.
    E. Brandas, M. Hehenberger and H.V. McIntosh, Int. J. Quant. Chem. 9, 103 (1975).CrossRefGoogle Scholar
  37. 21.
    P. Froelich and E. Brandas, Phys. Rev. 12A, 1 (1975).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Erkki Brändas
    • 1
  1. 1.Quantum Theory ProjectUniversity of FloridaGainesvilleUSA

Personalised recommendations