Bounds to the Sum-Rule Function from Inner-Projections

  • Ragnar Ahlberg


Many physical properties are evaluated from the average of an operator in quantum mechanics. Such averages can almost never be exactly computed.


Quantum Mechanic Ground State Energy Definite Operator Matrix Problem Differential Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Löwdin, P.O., Int. J. Quantum Chem. 2, 867 (1968).ADSCrossRefGoogle Scholar
  2. 2.
    Löwdin, P.O., Int. J. Quantum Chem. 4, 231 (1971).Google Scholar
  3. 3.
    Lindner, P. and Löwdin, P.O., Int. J. Quantum Chem. S2, 161 (1968).ADSCrossRefGoogle Scholar
  4. 4.
    Ahlberg, R. Int. J. Quantum Chem. S8, 363 (1974).CrossRefGoogle Scholar
  5. 5.
    BrKndas, E. and Goscinski, O., Phys. Rev. Al, 552 (1970).Google Scholar
  6. 6.
    Goscinski, O. and Brändas, E., Int. J. Quantum Chem. 5, 131 (1968).CrossRefGoogle Scholar
  7. 7.
    Aronszajn, N. Proceedings of the symposium spectral theory and differential problems, Stillwater, Oklahoma (unpublished ), 1951.Google Scholar
  8. 8.
    Bazley, N., Phys. Rev. 120, 164 (1960).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Bazley, N. and Fox D.W, J. Res. Natl. Bur. Std. (U.S.) 65B, 105 (1961).MathSciNetzbMATHGoogle Scholar
  10. 10.
    Löwdin, P.O., Phys. Rev. 139, 357 (1965).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Barnsley, M.F. Thesis: Best possible bounds for some atomic and molecular properties, University of Wisconsin, Madison. (1972).Google Scholar
  12. 12.
    Hirschfelder, J.., Byers Brown, W. and Epstein, S.T., Adv. Quantum Chem. 1, 255 (1969).ADSCrossRefGoogle Scholar
  13. 13.
    Dalgarno, A. and Kingston, A.E., Proc. Roy. Soc. A259, 663 (1960).Google Scholar
  14. 14.
    Bell, R.J. Proc. Phys. Soc. 86, 17 (1965).ADSCrossRefGoogle Scholar
  15. 15.
    Pack, R.T., Chem. Phys. Lett. 13, 205 (1972).ADSCrossRefGoogle Scholar
  16. 16.
    Whisnant, D.M. and Byers Brown, W., Mol. Phys. 26, 1105 (1973).ADSCrossRefGoogle Scholar
  17. 17.
    Goscinski, O., Int. J. Quantum Chem. 2, 761 (1968).ADSCrossRefGoogle Scholar
  18. 18.
    Langhoff, P.W. and Karplus, M., in Baker B.A. Jr. and Gammel, J.L., Eds., The Padé Approximants in Theoretical Physics ( Acad. Press New York ), 41 (1970).CrossRefGoogle Scholar
  19. 19.
    Ahlberg, R. and Goscinski, O., J. Phys. (Atom. Molec. Phys.), B7, 1194 (1974).ADSCrossRefGoogle Scholar
  20. 20.
    Arai S. and Kaneko S., J. Phys. Soc. 26, 1562 (1969).ADSCrossRefGoogle Scholar
  21. 21.
    Dehmer J.L., Inokuti M. and Saxon R.P., Phys. Rev. A 12, 102 (1975).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Ragnar Ahlberg
    • 1
  1. 1.Department of Quantum ChemistryUppsalaSweden

Personalised recommendations