Properties of Compressed Atoms from a Spherical Cellular Model

  • Anders Fröman


When pressure is applied to matter the volume per atom will decrease and, as conjectured by P.W. Bridgman long ago, changes will occur in the electron structure and hence in several solid-state properties. Static and in particular dynamic high pressure experiments on the pure elements /1–6/ have revealed that solid-solid transitions are not exceptional and that several properties e.g. compressibilities, electrical conductivity and melting temperatures do not change with pressure in a simple and regular fashion. The prime examples of this are perhaps the transitions in Ce /7/ and Cs /8,9/ at 7 kbar and 42 kbar respectively where a large discontinuous decrease of the volume occurs without changes in the lattice structure. These transitions have been denoted electronic, a concept which Drickamer and Frank /2/ interpret as a pressure-induced shift to a new or greatly modified electronic ground state of a system.


Volume Dependence Freeze Orbital Electronic Specific Heat Dynamic High Pressure Crystal Orbital 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.W. Bridgman, “Physics of High Pressure”, G. Bell and Sons, Ltd., London (1949).Google Scholar
  2. 2.
    H.G. Drickamer and C.W. Frank, “Electronic Transitions and the High Pressure Chemistry and Physics of Solids”, Chapman and Hall, London (1973).CrossRefGoogle Scholar
  3. 3.
    L.V. Al’tshuler and A.A. Bakanova, Soviet Physics Uspekhi 11, 678 (1969).ADSCrossRefGoogle Scholar
  4. 4.
    W.J. Carter, J.N. Fritz, S.P. Marsh and R.G. McQueen, J. Phys. Chem. Solids 36, 741 (1975).ADSCrossRefGoogle Scholar
  5. 5.
    J.F. Cannon, J. Phys. Chem. Ref. Data 3, 781 (1974).CrossRefGoogle Scholar
  6. 6.
    A. Jayaraman, Phys. Rev. 139, A690 (1965).ADSCrossRefGoogle Scholar
  7. 7.
    A.W. Lawson and T.-Y. Tang, Phys. Rev. 76, 301 (1949).ADSCrossRefGoogle Scholar
  8. 8.
    R. Sternheimer, Phys. Rev. 78, 235 (1950).ADSCrossRefGoogle Scholar
  9. F.W. Averill, Phys. Rev. B4, 3315 (1971)ADSCrossRefGoogle Scholar
  10. F.W. Averill, Phys. Rev. B6, 3637 (1972).ADSCrossRefGoogle Scholar
  11. 9.
    H.T. Hall, J.D. Barnett and L. Merrill, Science 146, 1297 (1964).ADSCrossRefGoogle Scholar
  12. 10.
    K.A. Gschneider, Jr., Solid State Physics (ed. F. Seitz and D. Turnbull), 16, 275 (Academic Press, N.Y., 1964 ).Google Scholar
  13. 11.
    K.F. Berggreri and A. Fröman, Arkiv för Fysik 39, 355 (1969).Google Scholar
  14. 12.
    G.M. Gandel’man, Soviet Physics JETP 16, 94 (1963)ADSGoogle Scholar
  15. G.M. Gandel’man, Soviet Physics JETP 24, 99 (1967).ADSGoogle Scholar
  16. A.I. Voropinov, G.M. Gandel’man and V.G. Podval’nyi, Soviet Physics Uspekhi 13, 56 (1970).ADSCrossRefGoogle Scholar
  17. 13.
    N.N. Kalitkin, Soviet Physics JETP 11, 1106 (1960).MathSciNetGoogle Scholar
  18. 14.
    See e.g. F.W. Averill (loc cit);Google Scholar
  19. M. Ross and K.W. Johnson, Phys. Rev. 2, 4709 (1970)ADSCrossRefGoogle Scholar
  20. J.F. Janak, V.L. Moruzzi and A.R. Williams, Phys. Rev. B12, 1257 (1975)ADSCrossRefGoogle Scholar
  21. W.E. Rudge, Phys. Rev. 181, 1033 (1969).ADSCrossRefGoogle Scholar
  22. 15.
    K.F. Berggren and A. Fröman, Report 174 (1966) from the Quantum Chemistry Group, Uppsala University, and other unpublished material.Google Scholar
  23. 16.
    E.A Kmetko, U.S. National Bureau of Standards Spec. Publ. 323 p. 67 (1970).Google Scholar
  24. 17.
    J. Yamashita and S. Asano, J. Phys. Soc. Japan 29, 264 (1970).ADSCrossRefGoogle Scholar
  25. 18.
    J.W. McCaffrey, D.A. Papaconstatopoulos and J.R. Anderson, Solid State Communications 8, 2109 (1970).ADSCrossRefGoogle Scholar
  26. 19.
    W.H. Gust and E.B. Royce, Phys. Rev. B8, 3595 (1973).ADSCrossRefGoogle Scholar
  27. G. Leman, talk presented at the 5th International Conference on High Pressure Physics and Technology, Moscow, May 26–31, 1975.Google Scholar
  28. R. Grover and B.J. Alder, J. Phys. Chem. Solids 35, 753 (1974).ADSCrossRefGoogle Scholar
  29. 20.
    J.W. Zink, Phys. Rev. 176, 279 (1968).ADSCrossRefGoogle Scholar
  30. 21.
    M.H. Rice, J. Phys. Chem. Solids 26, 483 (1965).ADSCrossRefGoogle Scholar
  31. 22.
    See e.g. B. Johansson, Phil. Mag. 30, 469 (1974).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Anders Fröman
    • 1
  1. 1.National Defence Research InstituteStockholmSweden

Personalised recommendations